GeoEDF: A Framework for Designing and Executing Reproducible Geospatial Research Workflows in Science Gateways

Rajesh Kalyanam, Jungha Woo, Lan Zhao, Carol X. Song, and Jack Smith*
Rosen Center for Advanced Computing, Purdue University
*Marshall University

June 15-17, 2022, Trento, Italy
Researchers spend up to 80% of their time “wrangling data”

Remote data repos, smart devices, streaming data

Reusuable Data Connectors
Pluggable Data Processors
Integrated Active Learning
Resource Interoperability Interfaces

Geospatial Data Pipeline Composer (GUI & API)

Cyberinfrastructure (Campus, XSEDE, HUBZero, Geospatial Tools, storage, Solr, ...)

GeoEDF Geospatial Data Framework

Make Science FAIR

OUR DATA WORKFLOW - Final
1. Go to the science gateway
2. Define "my_workflow.yml" (or use tool GUI if needed)
3. Ask GeoEDF to execute!
4. Data and workflow automatically published to science gateway

Remote data directly usable in code, seamless workflow
Complexity abstracted away
Reusable data connectors, processors, and workflows
Automatic provenance capture & data annotation => FAIR
An Extensible Geospatial Data Framework Towards FAIR Science

To help data-driven sciences to be more Findable, Accessible, Interoperable, Reusable

funded by NSF CSSI program award #: 1835822, Oct 2018 - Sep 2023
GeoEDF Components

Reusable Data Connectors
Implement various data access protocols, enable data acquisition from popular repositories

Reusable Data Processors
Implement domain agnostic & domain specific geospatial processing operations

Plug-and-play Workflow Composer
Enable the composition of individual connectors & processors into complex workflows

GeoEDF
Enable researchers to conceive of geospatial data driven workflows as a sequence of data acquisition and processing steps that can be carried out using pre-existing or user contributed connectors and processors
GeoEDF Workflow in a nutshell

Workflows are sequences of connector and processor instances

Connector and Processor instances specified in YAML

Connector and Processor Python classes
Example Hydrologic Workflow

Apply GeoEDF principles

NASA DAAC

HDF File(s)

HDF File(s)

HDFEOSShapefileMask Processor

Shapefile

Watershed shapefile
Corresponding GeoEDF Workflow (YAML)

$1:
 Input:
 NASAInput:
 url: https://e4ftl01.cr.usgs.gov/MOTAMCD15A3H.006/{file}
 user: rkalyana
 password:
 Filter:
 file:
 PathFilter:
 pattern: '%{dtstring}/MCD15A3H.*.h09v07*.hdf'
 dtstring:
 DateTimeFilter:
 pattern: '%Y.%m.%d'
 start: 07/16/2002

$2:
 HDFEOSShapefileMask:
 hddfie: $1
 shapefile: /home/mygeohub/rkalyana/subs1_projected_171936.shp
 datasets: [Lai]

- Filters enable spatial and temporal filtering before data acquisition
- This improves workflow generality and efficiency
Connector, Processor Contribution Process

1. **Contribute connectors/processors via GitHub pull requests**
2. **GitHub action detects changes, builds Singularity container, pushes to registry server**
3. **Workflow engine queries registry for list of connector, processor containers**
Gateway Integration

- Connector Python class
- Processor Python class
- GitHub repo
- Singularity Container registry (AWS)
- GeoEDF workflow
- GeoEDF workflow engine
- Pegasus
- Condor pool/HPC/local execution host
- Container image

- Gateway environment
- Middleware
- Shared Storage

- User Contributions
- GeoEDF Components
- Leveraged CI
Publicly available gateway
Deployed in Jupyter notebook environment as a Python library
Job submission to Purdue’s Halstead cluster

Self-contained Docker container
Can use to build and test new connectors, processors
Run on your own machine

Standalone deployment, in the works...
CILogon authentication
Workflow execution in local minicondor
GEOEDF WORKFLOW EXECUTION IN THE MYGEOHUB GATEWAY
Synthesize hydrologic and water quality data from various federal agencies (USGS, EPA, etc.) for EPSCoR states for ease of visualization and analysis

- Workflow produces an interactive map combining water quality data from WQP and stream reach data for a given monitoring station
Acquire and pre-process the necessary socio-economic, agricultural, and climate data for analyzing global-to-local food security and sustainability

- Workflow acquires diverse U.N. FAOSTAT datasets, aggregates it for the study region, and converts from custom “HAR” format into widely-used csv
Family of tools (models) for quantifying importance of natural capital

- Workflow wraps the InVEST NDR (nutrient delivery ratio) model to enable efficient parameter sweeps via HPC execution
Research reproducibility via declarative workflow conceptualization

Broad applicability across domains that have workflows with a mix of data acquisition and processing steps

Variety of integration options with CI and gateway platforms

Ability to leverage various compute resources (local machine, Condor pool, HPC)
Thank You

- GeoEDF GitHub Repository: https://github.com/geoedf
- GeoEDF Documentation: https://geoedf.readthedocs.io
- Publication: https://dl.acm.org/doi/10.1145/3311790.3396631

Email:
Carol Song (cxsong@purdue.edu)