

PROJECT OVERVIEW

This DIBBs implementation project develops geospatial data analysis building blocks (**GABBs**) in the HUBzero Scientific Collaboration Platform to enable researchers and educators to create and share geospatial data sets and computational tools. The project builds upon open source geospatial capabilities that have been developed by IT experts and validated by the science community and brings such capabilities to the masses so that non-GIS specialists can create and deploy online, interactive geospatial tools with open source software.

The project's guiding principles are:

- Self service
- Support end-to-end data-driven work flow
- Produce tools that domain scientists and high school students could use
- Support "live" data presentation (interactive, visual)
- Accessible and available
- Science driven, co-development

MAPPING & VISUALIZATION TOOLKIT

Our mapping capabilities are integrated into HUBzero's **Rappture** toolkit. Rappture provides different types of input and output controls that researchers can use to build their own applications without having to

know how to build graphical user interfaces.

Here is an output panel with a map. The map shows three different datasets computed from a crop simulation model.

GABBs uses OSG Earth as a **rendering engine** for the more demanding mapping operations such as 3D data visualization. OSG Earth creates projected (flat) maps, as well as geocentric maps as you would see in Google Earth.

GABBs focus areas:

- Easy to use tools and web services for users to self-manage, annotate, share, visualize and publish geospatial data
- Extended Rappture Toolkit and map library Application Program Interfaces (APIs) to support rapid creation of GIS-enabled, interactive online tools
- Applications from scientific use cases of modeling, data analysis and visualization to demonstrate the general applicability of the GABBs software

A scientist can use the **GeoBuilder** to assemble a map of multiple layers, including geo-referenced CSV files and geospatial vector and raster data, with customized visual analytical functions, and share this "data explorer" viewer with collaborators without any programming.

PyMapLib is a Python mapping library for geospatial data visualization. Built on open source software such as QGIS, PyQT, GDAL, pyMapLib has been used to GISenable scientific applications based on meteorological data, agricultural and economic spatial data and models in HUBzero.

DATA MANAGEMENT

iData is a data management software building block integrated with HUBzero Project. Users can upload, manage and share their geospatial data sets in their projects. Metadata is extracted automatically upon file upload and geospatial data preview, search, and publication are supported as well. Data sets can be "opened with" appropriate tools directly.

Engaging Science and Education Communities

MultiSpec is a processing system for interactively analyzing geospatial images data such as those collected by satellite and aircraft sensors, biomedical images, etc. The intent is to allow MultiSpec to be used in workflows for image preview and verification, pictures which can be creating displayed in the geoviewers being developed by GABBs from integer and real data types of 8 to 64-bit data values. MultiSpec has been used by researchers, classes, and middle-high school students in summer camps.

Create Proiect

iData Workflow

Features

wWw

iData Input Methods

Use Tools

Metadata

Add Team

earch

Graduate and undergraduate students are part of the GABBs science and software teams throughout the project. Three undergraduate students participated the 2016 summer Undergraduate Research Internship Program and made valuable contribution usability, improve enhance to functionality and explore interoperability.

The **gridded SIMPLE model** (SIMPLE-G) created by Agricultural Economists is a multi-region, partial equilibrium model of gridded cropland use, crop production, consumption and trade, a center-piece in food sustainability research using the global-to-local approach. SIMPLE-G uses the pyMapLib library and GABBs data management.

INVESTIGATORS

X. Carol Song Rosen Center for Advanced Computing Purdue University cxsong@purdue.edu

Larry Biehl Rosen Center for Advanced Computing Purdue University

Venkatesh Merwade Civil Engineering Purdue University

Nelson Villoria Agriculture Economics Kansas State University

Try GABBs:

Sign up for free https://mygeohub.org

Install on your own HUBzero hub

Your own GABBs-enabled hub in the cloud

For more information, visit: *mygeohub.org/groups/gabbs*

Follow us at:

This project is supported by ACI award no. 1261727 from the U.S. National Science Foundation.

