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Abstract: This paper seeks to survey, understand and reconcile the widely divergent estimates of 
long run global crop output, land use and price projections in the current literature. We begin by 
reviewing the history of such projections and the different models and assumptions used in these 
exercises. We then introduce an analytical partial equilibrium model of the global crops sector 
which provides a lens through which we can evaluate this previous work. The resulting 
decomposition of model responses into demand, extensive supply and intensive supply 
elasticities offers important insights into the diversity of model parameterizations being 
employed by the existing models. This, along with the methodology for implementing 
productivity growth, helps explain some of the divergences in results. We conclude the review 
by employing a numerical version of the analytical model, which serves as an emulator of this 
entire class of models, in order to explore how uncertainties in the common underlying drivers 
and economic responses contribute to uncertain projections of output, prices and land use in 
2050. We place each of the published estimates reviewed within this paper into the resulting 
empirical distribution of outcomes at mid-century. In addition, we quantify the sensitivity of 
these projections to model inputs. Our findings suggest that the top priority for future research 
should be improved estimation of agricultural factor supply elasticities – a topic which has been 
largely neglected in recent decades.  
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Glossary 
 
AgMIP  Agricultural Model Intercomparison and Improvement Project 
AIM   Asian-Pacific Integrated Model 
CGE   Computational General Equilibrium Model 
CR5  Cereals/Oilseeds/Sugar composite 
ENVISAGE  Environmental Impact and Sustainability Applied General Equilibrium Model 
FARM  Future Agricultural Resources Model 
GCAM  Global Change Assessment Model 
IAM  Integrated Assessment Model 
IFPRI  International Food Policy Research Institute 
IIASA   International Institute for Applied Systems Analysis 
LEITAP Landbouw Economisch Instituut Trade Analysis Project 
MAGNET  Modular Applied GeNeral Equilibrium Tool  
MAgPIE  Model of Agricultural Production and its Impact on the Environment 
MMT  Million Metric Tons 
SIMPLE Simplified International Model of agricultural Prices, Land use and the 

Environment 
SSP   Shared Socio-economic Pathways  
TFP  Total Factor Productivity 
USDA  US Department of Agriculture 
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1. Introduction 

1.1. Motivation 

The sharp spikes in international crop prices since 2006 have led to a resurgence of interest in 

global food security. This has, in turn boosted concerns about the implications of expanding 

cropland cover and deforestation for the terrestrial environment as well as greenhouse gas 

emissions. What will be the environmental cost of feeding 9+ billion people in 2050? How much 

land will be required?  In light of current and anticipated adverse climate impacts, concerns have 

also been raised about the long run trajectory of food prices. Given the importance of these 

issues, the wide range of projections of global crop output growth from 2005 to 2050 is rather 

disturbing, ranging from a modest 60% rise (Alexandratos and Bruinsma, 2012) to more than 

100% (Tilman et al., 2011). Projected changes in crop prices are similarly diverse, ranging from 

a doubling under adverse climate impacts (Nelson et al., 2010) to a resumption of the historical, 

post-WWII downward trend (Baldos and Hertel, 2014). What is behind these divergent estimates 

for output growth and prices? What are the key drivers behind the long run agricultural trends 

and what can we say about their likely paths in the coming decades? How does underlying 

uncertainty in drivers and response parameters translate into uncertainty in long run output and 

prices? The goal of this paper is to review the literature and competing estimates of crop output, 

price and land use in 2050, evaluate this work within the context of a consistent, analytical 

framework, and establish a likely distribution for these variables at mid-century. We conclude 

the review by proposing a set of research priorities designed to facilitate improved predictions of 

long run agricultural output and prices at global scale. 
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1.2 Past as Prologue to the Future 

 Modern day concerns about the ability of the world to feed itself trace back at least to the 

end of the 18th century, when Malthus predicted widespread famine based on his assumption that 

agricultural production, growing linearly, would be unable to keep up with geometric growth in 

population (Malthus, 1888). His prediction was subsequently contested by Ricardo’s more 

sanguine predictions based on rising productivity of land. Since then, there has been ongoing 

debate between the Malthusian and Ricardian views of the ability of the planet to feed an ever-

growing population. In the latter half of the 20th century, the debate was highlighted by 

influential publications by the Club of Rome (Meadows et al., 1972), The Population Bomb, 

(Ehrilch, 1970), and By Bread Alone (Brown and Eckholm, 1974) among others, all taking a 

Malthusian view of the future. Ironically, these publications emerged during a period of rapid 

crop yield growth in important parts of the world, an outcome of the so-called ‘green 

revolution.’2 A relatively long period of robust yield growth and mildly declining prices was 

abruptly interrupted in 2006/2007 (e.g., online appendix Figure A1) and gave a stronger, and 

more recent, voice to the Malthusian view.  

 There are many factors behind the recent price surges (Abbott et al., 2011). During the 

two year period from 2005/6 to 2007/8, half of the global growth in cereals demand can be 

attributed to increased ethanol production in the US (Westhoff, 2010). With biofuels drawing 

down stocks of grains and oilseeds, the world was left vulnerable to supply side shocks (Abbott 

et al., 2011, 2009). This ‘perfect storm’ placed the future of food and agriculture back on the 

                                                           
2 Attributed to William Gaud in 1968, then Administrator of the U.S. Agency for International Development 

(http://www.agbioworld.org/biotech-info/topics/borlaug/borlaug-green.html). 
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policymakers’ radar screens. The UK government initiated the Foresight Project that 

commissioned a substantive set of papers on various aspects of the future of food and agriculture 

summarized in its final report (Foresight, 2011). Several agencies issued major reports with 

conflicting views of long-term agricultural trends as reflected in agricultural price projections. 

On the ‘pessimistic’ side were IFPRI and Oxfam. IFPRI’s 2010 report (Nelson et al., 2010) 

predicted increases of maize, rice and wheat prices of between 18 and 32 percent in the absence 

of any impacts from climate change by 2050, and between 31 and 106 percent with climate 

change, with particularly large increases for maize. Oxfam issued a report in 2011 (Oxfam, 

2011) with much higher predicted price increases—close to a doubling by 2030 for maize, rice 

and wheat and substantially more incorporating climate impacts—an increase of nearly 180 

percent in the case of maize.  

 Other institutions continued to be more sanguine. The World Bank’s 2009 annual Global 

Economic Prospects Report (World Bank, 2009), with a focus on commodities, projected a 

continuation in the declining price trends through 2030. However, in keeping with the 

Malthusian spirit of the times, the report also explored alternative scenarios including a 

slowdown in productivity growth which led to modest price growth. Projections from the 

Netherlands based on the LEITAP model (see Prins et al. (2011)), were also suggesting price 

declines in their baseline through 2030—some 24-25 percent for temperate cereals and maize. 

These wildly divergent estimates precipitated establishment of the global economic analysis 

component of the Agricultural Model Intercomparison and Improvement Project (AgMIP) – 

results of which will be summarized below. 
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  Before turning to a comprehensive review of crop output projections to 2050, it is useful 

to pause and reflect on historical projections of global crop output for which we can compare 

predictions to actual realizations. The first such comparison was undertaken at the request of the 

International Food Policy Research Institute (McCalla and Revoredo (2001)) and focused on past 

projections by FAO, IFPRI and USDA. As one would hope for with ‘learning by doing’, they 

find that the efforts associated with FAO’s projections of wheat production and consumption did, 

in fact, improve over time. In the appendix to this review (Appendix Table A2), we have 

updated/extended the McCalla-Revoredo evaluation of FAO forecasts. The FAO projections of 

global cereals production in 2000, made sixteen years earlier, in 1984, were just 2 percent over 

the actual value. Cereals output projected for 2015 in the year 1998 were just 7 percent below 

actual observation with the difference likely accounted for by the strong growth in corn ethanol 

production in the US. Of course, cereals demand has been the most stable type of food demand. 

Oilseeds have been far more dynamic and therefore more difficult to predict (Appendix Figure 

A2).  

 In their review of the performance of IFPRI and USDA projections, the findings of 

McCalla and Revoredo (2001) are less favorable. Here, the size of the errors seem to get larger, 

rather than declining with additional agency experience. They attribute this in part to the 

mandate for further detail in these models, as forecast errors appear to increase with greater 

disaggregation. Not surprisingly, McCalla and Revoredo (2001) also find that forecast errors 

were largest for small economies with low quality data and limited in-country expertise. 

However, there were also large errors in projections of North American and EU production and 

consumption changes. The authors attribute this to the challenge of modeling agricultural 

policies in those regions. McCalla and Revoredo (2001) conclude their report by cautioning 
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against the use of global models to reach definitive conclusions about specific countries or 

regions. In keeping with their admonition, this review will focus primarily on global aggregates. 

2. Overview of the Modeling Landscape 

 Table 1 lists the models encompassed by this review, and their key characteristics. 

Perhaps the most obvious distinction across models is whether the framework covers just the 

food sector (partial equilibrium: PE – top panel of Table 1) or whether it encompasses the full 

economy (general equilibrium: GE – bottom panel of Table 1), but many within each of the two 

categorizations are hybrids of standard formulations. For example, many of the partial 

equilibrium models have different spatial resolution between production and demand units, and 

this even exists to some extent in some of the general equilibrium models. Two of the 

frameworks are not truly equilibrium models at all. The FAO and Tweeten and Thompson 

frameworks are in the tradition of simple accounting frameworks with trend analysis that rely 

strongly on expert judgment. 

 The spatial dimension is categorized across both supply and demand sides. All of the GE 

models rely on some aggregation of the GTAP database (see Narayanan et al. (2015)) that may 

include large countries individually, but typically collapse global activity to between 20 and 30 

regions. Using GTAP’s supplemental Agro-Ecological Zones database (see Monfreda et al. 

(2009)), production within a region can be distinguished across up to 18 AEZs. The PE models 

specify demand at either an aggregate regional or country level. Supply, on the other hand, varies 

from the grid-cell level (MAgPIE, GLOBIOM), to sub-regional (that may be defined by AEZ or 

water basin), to national. For example, IFPRI’s IMPACT model has a country resolution for 
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demand (and trade), but sub-regional Food Production Units (which tend to follow major river 

basins) for production.  

 Figure 1 helps to conceptualize the major drivers of change on the demand and supply 

sides of the models listed in Table 1 by providing an overview of a generic model of long run 

global crop output, prices and land use. Starting at the top of Figure 1, we see that  income per 

capita, population and biofuels are key drivers of change on the demand side. All of the models 

in Table 1 include population as an exogenous driver of the demand for food (hence the ‘X’ in 

the population column of Table 1). However, not all the models include an explicit 

representation of the links between income per capita, prices and food consumption – a point 

which deserves further discussion.  

In some notable cases (FAO, GCAM), food consumption is specified exogenously, based 

on the idea of eventual convergence of caloric consumption. This means that food demand is 

unresponsive to the economic forces which may vary across scenarios. In the case of the FAO 

projections led by Alexandratos and Bruinsma (see for example Bruinsma 2003 and 

Alexandratos and Bruinsma 2012), the authors have made extensive use of in-house and external 

expertise in formulating these projections.3 The final result can be usefully summarized in the 

form of an arc elasticity measuring the growth in global food demand for each one percentage 

point growth in global GDP (as a proxy for income). These are reported in the final column of 

Appendix Table A3 and suggest an arc-income demand elasticity for agricultural output between 

0.15 and 0.24, depending on the time period considered. The most recent FAO estimates, from 

                                                           
3 A core guiding principle of the reports has always been “… to describe the future as it is likely to be, not as it 

ought to be.”  
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Kavallari et al. (2016), serve to reinforce the importance of the anticipated saturation effect.4 

With daily caloric intake of nearly 3,400 in developed countries there is not much room for 

increasing demand without exacerbating the obesity crisis or increasing the level of wasted food. 

Some developing countries are also approaching saturation levels—even if the dietary transition 

to more proteins (dairy and meats) is yet to be completed. In China, the world’s largest food 

market, the FAO estimates daily per capita caloric intake at 3,108 in 2013, for example, but there 

is no doubt a wide household distribution underpins this figure. 

 Other models take the more conventional, top-down approach to determining consumer 

demands for food, using price and income elasticities of demand (Figure 1). Empirical evidence 

suggests that both the price- and income-responsiveness of consumers’ demand for food 

becomes smaller in absolute value as households become wealthier (Muhammad et al., 2011) 

Some of the models in Table 1 seek to take this into account through a series of ad hoc parameter 

adjustments over the course of their simulation.  

 Of course it is not just final demand that is potentially responsive to prices. Intermediate 

demands by the livestock and food processing sectors are also potentially quite important. All of 

the GE models have both of these channels for determining aggregate agricultural demand. None 

of the PE models have food manufacturing sectors; a few incorporate the livestock sector and 

price sensitive feed demand (e.g., GLOBIOM, GAPS, IMPACT). Biofuel demand is included in 

most of the models as a long run driver. In the case of the partial equilibrium models, this source 

                                                           
4 Despite the relatively large increase in rate of growth of per capita income, 0.6 percentage points (annualized 

basis) higher than the growth rate assumed in Alexandratos and Bruinsma (2012), the associated increase in the 

production growth rate predicted by Kavallari et al. (2016) is just 0.1 percentage points higher on an annualized 

basis than the earlier estimates. 
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of demand is typically exogenously specified, whereas in the general equilibrium models this 

may be related to the price of oil, as well as to government mandates which may, or may not be 

binding, depending on the oil price scenario (e.g., LEITAP). When these other sources of 

demand are also price responsive, we expect a larger farm level price elasticity of demand and a 

more muted market price responses to supply side shocks – particularly when the biofuel 

mandates are not binding. 

 The next set of columns of model characteristics identified in Table 1 are those associated 

with the price responsiveness of crop supply (see also the bottom portion of Figure 1). This 

depends critically on the scope for endogenous intensification – represented here was the 

potential for substituting non-land inputs for land, thereby increasing yields in response to 

scarcity (or the reverse in the case of crop surplus). In most cases, this intensification is viewed 

simply as increased application of variable inputs per hectare. However, in the case of the 

MAgPIE model, land scarcity engenders increased investment in agricultural R&D which, in the 

longer run, can generate higher yields (Dietrich et al., 2014). As shown in Table 1, several of the 

PE models do not allow for such endogenous intensification (FAO, GCAM, IMPACT, GAPS 

and T&T) – although some models allow for the choice between alternative fixed-proportion 

technologies thus exhibiting some substitution in the aggregate factor proportions (e.g., GCAM).  

As we will see below, these fixed proportions models tend to favor land conversion as an avenue 

for responding to scarcity in global food markets.  

 Virtually all of the market models in Table 1 rely on endogenous land supplies as a key 

factor in equilibrating long run supply with growing demands. However, as we will see below, 

the magnitude of this component – the extensive margin – of supply response varies greatly 
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across models. The bottom portion of Figure 1 also highlights the role of non-land factor supply 

response to the crops sector. This is a largely overlooked constraint on long run crop output. Yet 

the supply of labor, capital, fertilizer and other non-land inputs to the farm sector can play an 

important role in constraining crop output expansion in response to food scarcity. Nearly all of 

the PE models ignore this element, thereby overstating the importance of land (and possibly 

water) as the sole constraining factors on the supply side. The fact that they explicitly incorporate 

non-land factor supplies is a strength of the GE models – although as we will see, the empirical 

basis for these non-land input supply elasticities is quite limited.5  

 The models listed in Table 1 also vary in the way they treat productivity. Some (most of 

the PE models) treat productivity growth as a shifter in the yield equation (YS in Table 1). 

Others (most of the GE models) treat productivity growth as a change in the parameters of the 

underlying crop production function (PF), in which case it becomes important to distinguish 

between input-augmenting and factor-neutral technological change. As we will see in Section 3, 

these differences can give rise to significant differences in long run output growth despite 

authors’ assuming a common annual rate of crop productivity growth.  

 There are two broad strategies for specifying trade – and hence the equilibration of 

supply and demand at regional and global levels (center portion of Figure 1, see also final 

column in Table 1). The first is the homogeneous goods assumption (also known as Heckscher-

Ohlin, or HO), where markets clear at the global level and changes in global prices are reflected 

                                                           
5 An additional strength of GE models, of which not enough is exploited, is that changes in market prices are 

necessarily reflected by changes in the cost structure. For example, if agriculture is small relative to the overall 

economy, and non-land factors and goods are mobile, price rises will be embedded in the non-mobile factor, i.e. 

land. 
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in equi-proportionate changes in domestic prices (in the absence of variable tariffs to neutralize 

changes in global prices). However, this type of model is also prone to large swings in individual 

commodity trade balances. As a consequence, two of the PE models impose assumptions on the 

degree of self-sufficiency required in each region. In the case of the FAO framework, projections 

are adjusted iteratively to maintain a relatively high-degree of self-sufficiency. This implies, for 

example, that Europe’s potentially declining future demand will lead to declining production 

rather than an increased exportable surplus. MAgPIE incorporates exogenous assumptions on 

future food self-sufficiency ratios as a fundamental feature in the determination of agricultural 

trade. 

 The GE models listed in Table 1 implement the differentiated goods, or Armington 

(ARM) assumption. In this case, changes in the ‘world’ price of imported goods are typically 

fully transmitted into the domestic market. However, the domestic goods are assumed to be 

imperfect substitutes for the imported good (Figure 1, center section), and so their price will 

change less than proportionately with the international price. The precise outcome depends on 

the share of imports in domestic absorption and the degree of product differentiation. If goods, 

such as wheat, are close substitutes globally, then there is a high degree of price co-variance 

across regions.  

 A final difference between the PE and GE models is worthy of note and this has to do 

with the distinction between primary and processed goods. The PE models mostly focus on the 

production and consumption of primary agricultural goods. This has some appealing features, 

including the ability to more readily measure the availability of calories. The down-side is that in 

most cases producer prices are assumed to be the same as consumer prices and may overstate the 
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impact of changes in food prices on household patterns of consumption. All of the GE models 

incorporate the processed food sectors. In the higher income countries, where much of the food 

consumption is based on processed foods, consumers are somewhat ‘insulated’ from changes in 

agricultural prices, provided the prices of non-farm, processing inputs do not also change. 

However, this framework makes it more difficult to measure food consumption at the household 

level (without supplemental information). This challenge is rendered even more difficult since a 

significant proportion of household consumption occurs outside the household (i.e. is embedded 

in the consumption of services—such as restaurants). 

 Having surveyed the modeling landscape, we are now in a position to begin to compare 

2050 projections from these different models. However, given the wide differences in model 

structures, we find it useful to develop a common lens through which to view these results. We 

seek to boil their behavior down to a few key summary statistics which can be elicited from the 

models and compared to obtain insights about their different behaviors. The next section 

introduces this theoretical framework. 

3. Theoretical Framework 

 In order to understand numerical differences across the diverse models and projections 

reviewed in this paper, it is helpful to collapse the conceptual model in Figure 1 down to simpler 

framework which can be manipulated and solved analytically. Here, we follow Hertel (2011) and 

aggregate the individual supply and demand responses up to the global level. This eliminates the 

role of international trade, and focuses attention on the global drivers and elasticities of supply 

and demand. We ignore intermediate crop demands, tracing all final demand back to the farm-
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gate. The other key simplification imposed here is the assumption that, in the spirit of the PE 

models, non-land factors of production are in perfectly elastic supply.  

 The associated behavioral equations are presently in differential form in Box 1.  When 

filtered through the global economy back to the farm-gate, the price responsiveness of this global 

food demand is reflected in an iso-elastic demand curve with own-price elasticity -εD < 0/The 

system is subject to exogenous demand-side output shocks which we characterize in percentage 

change form as D
O∆  (biofuels, income and population), as well as shocks to the supply of land for 

agriculture, S
L∆ . Box 1 allows for three alternative types of productivity shocks, each of which 

has quite different consequences for long run output growth. These differences will prove 

important as we seek to reconcile results across global models. The following analysis tackles 

each of these, in turn. 

3.1. Traditional supply-shifter approach to technological change 

 We begin with a commonly employed technological change assumption in agricultural 

economics which involves an exogenous trend in yields (output/hectare), D
L∆ , which serves to 

dampen the derived demand for land (Box 1, equation 4). When combined, and solved for the 

equilibrium cumulative percentage growth in crop output over the projections period, we obtain: 

*
, ,

( )
/ / 1

D S D
D D DO L L

O O OS I D S E Dq ε
ε ε ε ε η

− ∆ + ∆ −∆ ∆
= + ∆ = − + ∆

+ +
    (1) 

Where , ,S I S E Dη ε ε ε= + + is the aggregate economic response to scarcity as evidenced through 

‘net demand growth’ which is defined as ( )D S D
A L L∆ ≡ ∆ + ∆ −∆ , i.e. the rate at which growth in 
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farm level demand, combined with land removals from agriculture, outstrip the exogenous trend 

yield growth. The crop commodity supply elasticity is broken into two components (Box 1; also 

recall Figure 1): the extensive margin ,S Eε  which summarizes the response of farmland to a rise 

in commodity prices, and the intensive margin: ,S Iε which captures the potential for yields to rise 

endogenously in response to higher farm level prices. 

 Subtracting D
O∆ from both sides of (1), it can be seen that, for positive net demand 

growth, 0∆ > , output will grow more slowly than predicted by the exogenous outward shift in 

net demand, i.e. * ( / ) 0D D
O Oq ε η−∆ = − ∆ < , provided the combined supply response is positive, 

i.e. / 1Dε η > . Conversely, when net demand growth is negative, the opposite will be true. These 

relationships are important when one seeks to compare projections of models in which economic 

forces are active, vs. those from models which are purely biophysical (e.g., FAO). Overall, in the 

period from 1961-2006, crop commodity prices fell by nearly one-third, suggesting that purely 

biophysical models of this historical period would have understated observed output changes – 

due to the fact that they ignored economic responses to this price decline. Indeed, this systematic 

under-prediction of output growth by the FAO is one of the central findings in the McCalla-

Revoredo (2001) review discussed above. Our analytical framework explains why this result is 

expected. We summarize this important insight as follows: Purely biophysical models of long 

run output determination will overstate output growth when net demand growth is positive, and 

understate output growth when yields are growing faster than the combined food demand and 

cropland supply shifts. 
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 In addition to the expression for the change in output, it will be useful to have at hand the 

companion expressions for the change in crop prices and land use as a function of the exogenous 

perturbations to this system:  

*
, ,

D S D
A L L

O S I S E Dp
ε ε ε η
∆ + ∆ −∆ ∆

= =
+ +

        (2) 

* ,
, ,

D S D
S E SA L L

L LS I S E Dq ε
ε ε ε
∆ + ∆ −∆

= −∆
+ +

       (3)  

In the next section, we will use the system of equations (1) – (3) in order to evaluate the behavior 

of the existing global economic models being used to project agricultural prices, output and land 

use. 

 As we saw in Table 1, it is not uncommon in the partial equilibrium models to omit one 

of the three key margins of economic response highlighted in this framework. Based on 

equations (1) and (2), we expect the models with endogenous supply response, but negligible 

demand response, might have an exaggerated price reaction to scarcity, while the output 

response will be muted. On the other hand, by equation (3), models which omit the intensive 

margin of supply response will have a tendency to convert more cropland. 

3.2 Hicks-neutral production function approach to technological change 

 The preceding discussion was based on the common approach, in partial equilibrium 

commodity models, of including an exogenous yield trend in the model. However, this is 

inconsistent with the production function approach to long run projections. Indeed, simply 

inserting a shifter into the yield function ensures that the resulting evolution of output will be no 
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longer lie on the underlying production function. Therefore, instead of an exogenous yield 

shifter, we introduce technological progress directly into the crop production function itself.  

 In the case of factor-neutral technological improvement ( 0Oa > ), solving the long run 

model in Box 1 for the percentage change in output as a function of this technology shock yields: 

* ( 1) /D
O S Oq aε ε η= +           (4) 

This may be contrasted with the output impact of trend yield growth from the supply-shifter 

model in equation (1) which is: * /D D
O Lq ε η= ∆ . Note that a one percent exogenous rate of growth 

in Hicks neutral technological change, 1Oa = , is not equivalent to a one percent rate of growth in 

yields. To we why, refer to the model of long run output growth in Box 1. The Hicks-neutral 

technological change, Oa , appears in two places in this model. Firstly, it appears in the derived 

demand equations for land and non-land inputs. Since non-land inputs do not constrain long run 

output growth, it is the derived demand for land equation which is of primary interest. In this 

case, Oa plays the same role as D
L∆ . Both are subtracted from output growth, allowing for more 

output from the same amount of land.  

 However, note that Oa also plays another role in the model of long run output 

determination. In the first and second equations of Box 1, Oa  is added to the percentage change 

in price, thereby enhancing profitability in the sector. Indeed, at constant prices for both output 

and non-land inputs ( 0)O Np p= = , this technological innovation will result in positive profits, 

thereby encouraging entry into the sector. In long run equilibrium, with limited land, these 

enhanced profits will translate into higher returns to land 1( )L L Op aθ −= , where 1
Lθ
− is the inverse 
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cost share of land. Of course with less than perfectly elastic demand for output, some (perhaps 

most) of these gains will be transmitted forward to consumers in the form of lower output prices. 

The fact that a Hicks-neutral productivity gain also affects profitability in the sector, means that 

we must factor in the sector’s ability to respond to this change in profitability by boosting output, 

which explains the presence of an additional supply elasticity term in the numerator of (4). These 

theoretical insights may be summarized as follows: In the presence of positive supply response, a 

Hicks-neutral shock to technology will always give a larger rate of long run output growth than 

an equi-proportional shift in the supply schedule. The larger the sectoral supply response, the 

larger will be this difference. 

3.3 Land-augmenting production function approach to technological change 

 In addition to Hicks-neutral technical change, the production function imbedded in the 

model in Box 1 also offers the possibility of biased, factor-augmenting technical change. In the 

context of the long run output projections discussed below, it is most common to utilize land-

augmenting technical change, or, in terms of the equations in Box 1: 0La > . Solving the model 

for output growth as a function solely of this form of technological progress gives the following 

expression:  

* ( 1) /D
O L Lq aν ε η= +           (5) 

where Lν is the area supply response to a one percent change in the land rental rate. As with the 

Hicks-neutral technical change, the land-augmenting perturbation affects not only the direct 

amount of input required (land in this case), but also the profitability of land use in the sector, 

thereby boosting the output response beyond that achieved with a simple supply shift.  
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 Comparison with this Hicks-neutral outcome is facilitated by noting that the aggregate 

supply response is given by 1 1( 1)S L L Lε θ ν σ θ− −= + − , where 0σ ≥  is the elasticity of substitution 

between land and non-land inputs. It is possible that a one percent rate of land-augmenting 

technological progress could result in the same long run output growth as the same rate of 

change in Hicks-neutral technology; however, this only arises in the unlikely case that land is the 

only input in production ( 1Lθ = ). These insights may be summarized as follows: Equi-

proportional shocks to the Hicks-neutral and land-augmenting parameters in the agricultural 

production function will only give rise to equal rises in long run output when non-land inputs are 

negligible. In general, the Hicks-neutral shock will give rise to a larger change in output, with 

the difference increasing in both the cost share of non-land inputs rises and the elasticity of 

substitution between land and non-land inputs. When compared to output growth under the 

supply shifter approach, land-augmenting technical change will give a larger response, with the 

magnitude of this difference depending on the elasticity of cropland supply with respect to land 

rents. 

It will also be useful to have analogous expressions to equations (2) and (3) for long run 

changes in crop price and land use in the presence of both biased and neutral technological 

change. These are developed in the appendix and are used in the next section to back-out global 

supply and demand responses from the various models. Having these theoretical insights at hand, 

we are now ready to turn to a rigorous evaluation of the family of quantitative economic models 

currently being used to project long run changes in output, land use and prices to mid-century. 

4. Global projections for crop output, prices and land use 
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 Table 2 summarizes published projections to 2050 from the models discussed in Table 1. 

The first line reports FAO projections made in 2012. Here, total crop output is projected to grow 

by 52% over the 2005-2050 period. However, cereals output growth is just 41% over this period. 

The CR5 aggregate reported here includes oilseeds and sugar crops and shows a considerably 

higher cumulative growth rate (58%). This is all accomplished with very modest net growth in 

cropland (just 4%). As noted previously, the FAO approach to projections does not rely on 

market equilibrium and therefore does not generate a price change. More recent work at the FAO 

(GAPS) predicts a somewhat higher growth rate for global crops (60%). And, once the FAO 

approach is adjusted for more recent projections of global GDP growth (SSP2—see below), 

cereals growth rise to 57% period.) These estimates are broadly consistent with the projections 

by Tweeten and Thompson presented as ranges in the third row of Table 2. These depend on 

assumptions about underlying drivers of change. The lack of harmonization on these drivers has 

previously made comparison across model projections difficult.  

 The next set of entries in Table 2 are drawn from the models involved in the AgMIP 

global economic model comparison exercise. This effort was undertaken to highlight differences 

in projections across models, and to improve the models in terms of specification, 

parameterization, as well as implementation of assumptions on the evolution of technology and 

preferences over time. To begin with, all models were harmonized to the same set of key drivers. 

Population and GDP projections were taken from a preliminary version of the so-called shared 

socio-economic pathways (SSPs). The SSPs have been developed by the Integrated Assessment 

Modeling (IAM) community and are intended for broad use by all scientific groups working on 
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long run analysis of climate change.6 For the AgMIP exercise, SSP2—the so-called middle of the 

road scenario—was used as the baseline using the population projections from IIASA and the 

GDP projections of the OECD. The SSP2 projections have population increasing by about 40% 

between 2005 and 2050, and global GDP more than tripling (see Figure A3 in the Annex). The 

modeling teams also harmonized on a third set of drivers—IFPRI’s so-called intrinsic 

productivity rates (IPRs). These were used as shifters ( D
L∆ ) to yield functions in the partial 

equilibrium models and land-augmenting technological shocks ( La ) in the crop production 

functions of the general equilibrium models.7 

 The first three columns in Table 2 report indexes of the growth in global supply of 

cereals, a cereals/oilseeds/sugar composite (CR5), and total crops, from 2005-2050. When 

converted to levels, the first column may be compared with FAO’s 2012 projection of around 

3,000 MMT of cereal output in 2050.8 The range of AgMIP outcomes for cereals production are 

relatively narrow, with the exception of the MAGNET model which predicts significantly higher 

growth (86%). It is perhaps not surprising that many of the projections are broadly consistent 

with the SSP2-adjusted FAO cereals projection of 57% growth.9 This consistency is partly by 

                                                           
6 A preliminary version (0.53) of the SSP projections were available at the start of the model comparison exercise. A 

newer version is now available. 

7 PIK’s MAgPIE model only loosely calibrated to the exogenous yield shifters for specification reasons. As well, 

several of the CGE models also shocked labor-augmenting technical change. We will discuss this below. 

8 Taking into account the relative growth in agricultural production with the FAO’s new model (GAPS) and the 

SSP2 projections, the current FAO projection is likely between 3,200 and 3,300 MMT. 

9 Almost all also show a declining demand growth trend—to be expected from a deceleration in population growth 

and declining income elasticities with income growth. On the other hand, greater feed requirements (driven by 

dietary shifts) and higher bio-energy demand could counteract the former effects. 
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design, as half of the modeling groups loosely calibrated their model’s response to reproduce the 

FAO’s arc elasticity of demand discussed above (Valin et al., 2014).  

 Comparison of column two, CR5 output growth, in Table 2, with the cereals output 

growth, clearly reveals that the strong historical growth in oilseeds is expected to continue. The 

growth rate in this broader composite is markedly higher than for staple grains alone – reaching 

more than 100% (an index of 208) in the case of MAGNET and a near doubling of CR5 output 

in most of the other models. Broadening the definition of output to all crops (third column of 

results in Table 2) introduces much greater variation in output growth. This is likely due to 

differing definitions of what is included in the crop aggregate, and less harmonization of 

underlying parameters for these other commodities.  

 Despite the apparent harmonization with respect to total output growth, there is less 

agreement on the evolution of prices across the AgMIP models (second to last column in Table 

2). The median value for all crops in these simulations suggests a modest rise by 2050, which, if 

realized, would signify a reversal of the long run declining price trend over the last century 

(Appendix Figure A1). However, the range for the aggregate price index is very wide, extending 

from a decline of 16 percent to a rise of 46 percent, with half of the AgMIP models showing a 

price decline and half predicting a price rise over the 2005-2050 period, under SSP2, and in the 

absence of climate change impacts. 

 Turning to net cropland expansion, it is surprising that, for broadly comparable increases 

in crop production, changes in cropland over this period are surprisingly varied – ranging from a 

modest decline, in the case of the FARM model, to a large increase in the case of AIM and 

MAGNET. A number of the models are within range of the latest projections from the FAO, 
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which suggest an increase of some 70 million hectares at the global level—to a total of 1,661 

million hectares10—but half of the models are above this level, with the highest (MAGNET) 

projecting an increase of nearly 400 million hectares! 

 Some of these differences across projections can be readily explained by the differing 

assumptions about the underlying drivers of demand. Clearly slower income growth, compared 

with SSP2, plays a role in explaining the more modest growth in crop output under the FAO 

projections. However, this does not explain the differences across the model projections drawn 

from the AgMIP exercise as these drivers of demand have been harmonized. Understanding the 

remaining differences requires us to dig more deeply into the models’ assumptions about supply 

and demand behavior (recall Figure 1). This is normally quite difficult to do. However, in the 

case of the AgMIP models, we are fortunate to have access to results from a series of exogenous, 

climate-motivated yield shocks which all of the modeling teams implemented. This allows us to 

back-out the implicit demand and supply elasticities for global crop output, which should aid in 

explaining some of these model differences.  

 Table 3 reports the implied, global supply and demand elasticities for each of the models 

in the AgMIP effort. In the case of the partial equilibrium models, all of which used the supply-

shifter approach to technical change, this involved solving equations (1) – (3) for the underlying 

elasticities, given observed changes in output, prices and land use. (Since the technology shocks 

were only implemented for the CR5 crops, we use the results from the CR5 composite in these 

calculations.) In the case of the general equilibrium models, since the shock was applied to land-

                                                           
10 Alexandratos and Bruinsma (2012)  use an adjusted number for the 2005/07 period that may not line up directly 

with the official FAO statistics.  
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augmenting technical change, the resulting equations are slightly different. (Compare, for 

example, equations (1) and (5). See the Online Appendix for detailed derivations and the 

algorithm for solving for the values in Table 3.)  

 Table 3 permits a number of important observations about these diverse models. First of 

all, the aggregate response of these models to economic scarcity varies greatly. With the 

exception of GCAM, which is a hybrid model designed as part of an Integrated Assessment 

modeling system and seeks to cover all land uses, the partial equilibrium models tend to have a 

much smaller elasticity total (first column). This point has been made previously by Hertel 

(2011) who hypothesizes that these settings may reflect the evolution of these agricultural 

commodity models from near term forecasting to long term projections frameworks. The only 

way to obtain the kind of crop price volatility observed on an inter-annual basis is to have a 

relatively low value for η , the total price elasticity (recall equation (2)). This is obtained in the 

commodity models by having small supply elasticities at the intensive margin – a point 

consistent with short run analysis. By contrast, the CGE models are not used for year-on-year 

forecasting, and price volatility is a lesser point of emphasis. Furthermore, the supply elasticities 

are functions of deeper parameters (Robinson et al., 2014) which are consistent with longer run, 

equilibrium assumptions. Thus we see in the CGE models larger aggregate responses to scarcity, 

with the supply side of the market dominating the overall price responsiveness.  

 As we look through specific models in Table 3, a number of points stand out. MAgPIE, 

for example, has, by design, exogenously specified demand. Based on equation (1), this means 

that output growth will not respond to scarcity, being driven instead by the exogenous demand 

shocks. Overall, the CGE models appear to have relatively small farm-level price elasticities of 
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demand. This is likely a function of the fact that very little of the crop commodity is sold directly 

to consumers in a CGE model. Rather, it must first pass through multiple processing activities, 

which tend to mute the farm-level price responsiveness of final demand. 

 There are also a number of counter-intuitive signs in Table 3. (Due to our definition of 

the demand margin, all expected signs are positive.) This is presumably due to compositional 

effects. For example, the MAGNET model has very large land supply elasticities and relatively 

small intensification elasticities, suggesting that the main response to adverse technological 

change (i.e., a negative climate change impact) will be to bring in more cropland area. Given the 

trade specification (segmented markets via the Armington assumption), if the adverse climate 

shocks are largest in regions with relatively low yields, this is where the price rises will be 

largest. If, in addition, these regions also have large land supply elasticities (e.g., Africa), then 

we expect strong expansion in low-yielding land areas. This would result in a decline in global 

average yields for grains and oilseeds in MAGNET. This outcome is observationally equivalent 

to a negative intensive margin when viewed at global scale through our conceptual lens, which is 

why we see the negative entries in the final column of Table 3. AIM and FARM (also Armington 

models) show negative intensive margins at global scale, as do IMPACT and GCAM. In these 

cases, this is due to the absence altogether of intensification possibilities, combined with a 

compositional effect. 

 With this information from Table 3 in hand, we can now return to Table 2 and explain 

why the ENVISAGE model has the strongest output growth. Despite a modest price rise, crop 

output expands by 108% over the projections period. This is consistent with the very strong 

supply response in this model. It is also now clear why MAGNET, AIM and ENVISAGE predict 
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so much cropland conversion between 2005 and 2050. These are all models where the extensive 

margin of supply dominates the total economic elasticity. By the same token, this comparison 

raises a puzzle with respect to GCAM, and especially the FARM model. In both cases, the 

extensive margin dominates the total elasticity, yet cropland growth is more muted – indeed 

cropland is lower in 2050 than in 2005 in the case of FARM. This may be due to the assumptions 

about land mobility within AEZs which is quite different from the other models (Sands, Jones 

and Marshall, 20014).  

The preceding discussion highlights the challenges of obtaining a consensus from the 

global models currently in use. Despite the involvement of top flight researchers in the AgMIP 

model inter-comparison exercise, and the expenditure of significant resources by ten11 different 

modeling teams over several years, the final set of projections for prices and cropland use remain 

quite different, and, more importantly the differences cannot be fully explained. We are left 

wondering: How great is the underlying uncertainty about total crop output in 2050? In order to 

advance the science in this area, we return to the stylized framework outlined in Figure 1 and 

Box 1 and develop an emulator12 which provides a numerical lens through which to view the 

interplay of drivers and economic responses in determining global crop output, price and land 

use projections to 2050.  

 5. Emulator analysis of cropland, output and prices 

                                                           
11 We report the results from 9 of the 10 teams that participated. The 10th model, EPPA based at MIT, did not have 

the agricultural resolution for a full model comparison. 

12 Emulators are common in climate science, where it can take months to complete a full scale simulation 

experiment. They typically comprise a few key equations which are capable of broadly replicating key relationships 

in the detailed models, but at global scale. 
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Return for a moment to Box 1 which offers a simple, theoretical framework for thinking 

about the long run evolution of the global crops sector. With a few modifications, this can be 

expanded to reflect the key features of the projections problem as identified in Figure 1. This 

includes: (a) adding a regional index, (b) including a specification for trade – here we choose to 

follow the Armington (segmented markets) hypothesis, and (c) allowing for the less than 

perfectly elastic supply of non-land inputs. In addition, to adequately emulate the models used in 

this area, we separate out three sources of farm level demand for crops: livestock feed, processed 

foods and direct crop consumption. Such a model can be readily calibrated to the same 

international data sets as used for the models in Table 1 (Baldos and Hertel, 2013) and its 

simplicity allows for a more comprehensive uncertainty quantification of long run projections for 

the global crops sector.  

All of the emulator’s elasticities and demand drivers are summarized in Table 4. These 

are drawn from the same basic sources as the global models listed in Table 1 (see online 

Appendix for additional details). In addition to the most likely values for each parameter (the 

mode – listed first), we also provide likely maximum and minimum values in each case. This 

permits us to consider the full distribution of results for 2050. (For the sake of consistency, we 

have adopted the same population and income growth rates as used in the AgMIP inter-

comparison study, namely those from SSP2.)  Unlike the AgMIP partial equilibrium models, 

productivity growth is treated through shifts in the production function rather than in yields. In 

order to shed additional light on the CGE results which also incorporate such production function 

shifts, we explore two alternative simulations in the online appendix, in the first case, in the 

second to last row (EMULATOR*) we follow the lead of the AgMIP CGE models and interpret 

the intrinsic rate of productivity growth as a shock to land-augmenting technical change. In order 
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to ensure an overall rate of TFP growth consistent with historical experience, we also shock non-

land augmenting technical change using the global projections from Ludena et al (2007), along 

with regional scaling factors from Fuglie (2012). This is roughly consistent with several of the 

AgMIP/CGE studies which also shocked some elements of non-land factor productivity. (This 

aspect of their experiments was not harmonized.) In this case, crop output is projected to grow by 

79%, while crop prices fall and cropland expands by 19%. Compared to the AgMIP models, 

these projections are most similar to those of MAGNET, although crop land expansion is less 

dramatic in the Emulator, due to that model’s relatively greater reliance on the intensive margin 

of supply (Table 3, bottom row).  

The final row in Table 2 (Emulator**) shows the outcome if non-land inputs do not 

experience productivity growth. As anticipated by our theoretical analysis, the projections are 

now dramatically different. Output growth is 18 percentage points lower, crop prices rise by 26% 

and cropland expansion is much higher when non-land factors do not become more productive. 

This makes it very clear why the CGE modelers in the AgMIP exercise chose to increase non-

land as well as land productivity in their 2050 projections. However, since those shocks were not 

harmonized across GE models, it is difficult to say much more about this important aspect of the 

projections. 

The objective of introducing this emulator is to explore the interplay between the 

uncertainties in economic drivers, supply and demand parameters, and the crop sector outcomes 

in 2050. We begin this uncertainty quantification with a Monte Carlo analysis, for which we run 

the model 5,000 times, each time drawing a different combination of parameters from the 

distributions outlined in Table 4. Given the straightforward nature of this methodology, it is 

perhaps surprising that there are not more such analyses already available in the literature. 
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However, most global models of agriculture are quite large, with many parameters, and the 

computational burden is therefore significant – hence the value of the emulator approach.  

 Figure 2 reports the distributions for key model outputs at global scale based on the 

5,000 simulation samples. Note that the distributions of these global changes are skewed to the 

right, highlighting the fact that there are critical combinations of external drivers and economic 

parameters which could give rise to extremely high values in these global variables. For 

example, in the few emulator’s simulations which predict a 50% increase in global crop prices, 

population and income projections are at the upper end of their distribution while crop TFP 

growth and non-land supply elasticities are at the lower end.  Mean values from the Monte Carlo 

analysis are reported with the dashed line. They predict output growth and cropland expansion 

over the 2006-2050 period of 102% and 20%, respectively. The expected value for the change in 

crop price is virtually flat at -3% with 66% of the simulated price changes predict falling or 

declining crop prices and 34% predicting price rises.  However, if we only rely on the modal 

input values from Table 4, we see more modest changes in global crop production and cropland 

use (85% and 12%, respectively), while crop prices are expected to fall by 13%. These results 

highlight the importance of estimating the full distribution of outcomes if one wishes to obtain an 

accurate estimate of the expected values of key variables. Simply projecting modal outcomes 

does not factor in the long right-hand tail in these figures. 

We have super-imposed the model projections from Table 2 onto the distributions in 

Figure 2 in order to see where they fall within this distribution of emulator outcomes. From this, 

it is immediately clear that the emulator framework is potentially consistent with nearly all of the 

individual predicted outcomes from all of the different models. For example, both the 16% crop 

price decline projected by MAGNET and the 46% price rise from AIM fall within the overall 
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distribution of price outcomes in Figure 2. However, this distribution also suggests that the AIM 

results is an extreme outcome –lying outside the emulator’s 95% confidence interval denoted by 

the red bars. With the exception of the early FAO estimate (slow GDP growth), AIM, MAgPIE 

and GAP, , all of the other models fall within the 95% confidence interval of outcomes from the 

emulator. As noted above, cropland results are the most diverse. This is likely due to the 

diversity of approaches in modeling technological progress, which, as we have seen from Section 

3, has critical implications for the derived demand for land. Nonetheless, six of the nine model 

projections fall within the 95% confidence interval. (The negative growth in cropland from 

FARM is not shown in the Figure.)  

 The real payoff from developing this global crop model emulator is that it allows us to 

undertake comprehensive screening of the role of underlying parameters in determining 

uncertainties in 2050. Figure 3 reports the relative importance of each uncertain model input 

(recall Table 4) in the determination of the final changes in crop price, production and land use. 

These have been computed using the Morris Method, which perturbs individual drivers and 

economic parameters one-at-a-time across their full distribution in order to elicit the impact of 

elementary effects of each model input, allowing identification and ranking of critical model 

variables (Morris, 1991). In light of the theoretical discussion above, it is hardly surprising that 

crop TFP growth is the most important input in driving future crop price uncertainty. If we wish 

to improve our understanding of the long run trajectory of food prices, we must focus on 

improving the accuracy of our projections of future TFP growth (Dietrich et al., 2014). This must 

begin by focusing on the determinants of agricultural productivity, which are closely tied to 

research and development expenditures (Alston et al., 2009; Fuglie, 2012). Improved 
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understanding of future TFP growth will also play a significant role in dictating future crop 

production and cropland where it ranks 6th and 8th in importance. 

 More surprising is the second-most important contributor to global price change 

uncertainty in Figure 2 – the elasticity of supply of non-land inputs to crop production. This is a 

parameter which receives almost no attention in the contemporary agricultural economics 

literature, yet it ranks 2nd, 5th and 6th in relative importance in driving future changes in price, 

production and land use. As noted previously, the relative sizes of the land and non-land 

elasticities of factor supply used here are obtained from a series of literature reviews 

commissioned by the OECD (OECD, 2001). Those studies cite mostly much older literature. 

Labor supply to agriculture was a central issue for Nobel Laureate T.W. Schultz (Schultz, 1951) 

and his students at the University of Chicago (Tyrchniewicz and Schuh, 1966; Sumner, 1982). 

As Schultz anticipates in his 1951 paper, titled “The Declining Importance of Agricultural Land” 

(Schultz, 1953), non-land inputs – in particular labor and capital – have become the dominant 

inputs in the global agricultural production function (see also Just and Pope, 2001). It is high 

time that the economics profession revisits the problem of measuring the responsiveness of non-

land input supply to agriculture. 

 Equations (1) – (3) highlight the critical role of demand growth determining the long run 

evolution of the crops sector. From Figure 3 it is clear that demand growth is driven by income 

per capita (ranking 2nd – 3rd in Figure 3) and population (ranking from 4th – 7th in relative 

importance), as well as the economic responsiveness of demand to income growth. The elasticity 

of land supply is also a key parameter – particularly when it comes to cropland expansion (1st in 

relative importance). The intensification parameter (elasticity of substitution between land and 

non-land inputs in the crop sector) ranks 2nd to 11th in relative contribution to changes of the 
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variables reported in Figure 3. However, the other variables are typically in the bottom half of 

the relative importance plots for global outcomes in Figure 3 and appear to be factors which 

should attract lesser priority if the goal is to reduce uncertainty about long run crop production, 

prices and land use.  

5. Summary and Conclusions  

 This paper has reviewed the literature on long run projections of global crop output, 

prices and land use, begun nearly half a century ago in the midst of an earlier ‘food crisis’. The 

world has recently been through another period of high and volatile food prices which has 

precipitated a flurry of new projections to 2050. Of particular note is the AgMIP effort which 

sought to harmonize inputs into ten global economic models, comparing the resulting 

projections. However, the projections for the global crops sector nonetheless vary quite widely. 

We trace part of this variation back to the underlying supply and demand responses in these 

models, as well as their treatment of technical change which proves to be a critical driver of 

future crop output and prices. 

 In an effort to better understand the sources of uncertainty in crop output, prices and land 

use in 2050, we create an emulator, designed to capture key features of the models reviewed in 

this paper. This allows for a comprehensive uncertainty quantification which reveals a very 

broad distribution of potential outcomes for these global variables. Importantly, the distributions 

are all rightward-skewed, such that the expected values for global crop output, price and land 

use in 2050 are all higher than the point estimates obtained by simply using the most likely input 

values for the underlying drivers and economic response parameters. Based on the mean 

outcomes from these distributions, crop prices are expected to be at roughly the same level in 

2050 as in 2006, while overall crop production is expected to double. (Although growth in 
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cereals output will be much slower.) Cropland conversion is expected to continue at roughly the 

same rate as in the 1961-2006 period.  

 We also highlight the critical drivers of uncertainty in crop production, output and land 

use. Improvement in future predictions will benefit most from greater attention to TFP 

projections. This is followed closely by the need to provide improved estimates of the elasticities 

of supply of labor and capital to agriculture. The latter has been a neglected area of research over 

the past thirty years and deserves far greater attention in the future. 
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Summary Points: 

1. This paper reviews the literature on long run projections of global crop output, prices and land 

use, begun nearly half a century ago in the midst of an earlier ‘food crisis’ and which has been 

stimulated by the recent period of high and volatile food prices. 

2. The AgMIP model comparison effort is noteworthy for harmonizing inputs into ten global 

economic models but their projections vary widely due to differences in the underlying supply 

and demand responses, as well as their treatment of technical change. 

3. We undertake a comprehensive uncertainty quantification using an emulator of the reviewed 

family of global crop models which reveals a very broad distribution of potential outcomes for 

output, prices and land use in 2050.  

4. The distributions of all three variables are rightward-skewed, such that the expected values are 

all higher than the point estimates obtained by simply using the most likely input values for the 

underlying drivers and economic response parameters.  

5. Based on our analysis, crop prices are expected to be at roughly the same level in 2050 as in 

2006, while overall crop production is expected to double and cropland conversion is expected to 

continue at roughly the same rate as for 1961-2006.  
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Future Issues: 

1. Improvement in future predictions will benefit from greater attention to TFP projections. 

2. Global economic modelers must give more thought to the way they incorporate productivity 

growth into their framework, since this is an important source of difference across model 

projections.  

3. Future research should focus on the relatively neglected topic of labor and capital supply to 

agriculture, as this is a key parameter governing the long run evolution of the crops sector. 
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Box 1: A simple model of long run demand and supply for agricultural land 

(1) D D
O Oqo pε= − + ∆      : demand for agricultural output  

(2) ( )O O j j j
j

p a p aθ+ = −∑     : agricultural entry/exit; zero profits 

(3) ( )N N O O N N O Oq a q a p a p aσ+ = − − − − −   : demand for non-land inputs 
(4) ( ) D

L L O O L L O O Lq a q a p a q aσ+ = − − − − − −∆  : demand for land input  

(5) 0,jp j L= ∀ ≠       : supply of non-land inputs  

(6) S
L L L Lq pν= −∆      : supply of land to agriculture   

Notation: all price and quantity variables represent percentage changes in the underlying indexes 

Oq , jq  : % change in long run agricultural output and input j 

Oa , ja  : cumulative output-augmenting and input-j augmenting technical change in agriculture 

Op , jp  : % change in the price of agricultural output and input j 

0σ ≥  : elasticity of substitution between land and non-land inputs 

0jν ≥ , 0jθ ≥ : elasticity of supply to agriculture and cost share of input j 

0Dε ≥  : price elasticity of demand for agricultural output  

, ,S S D
L L O∆ ∆ ∆ : ad hoc shifters in land supply, land demand and output demand  

, 1S E
L Lε θ ν−≡ : the extensive margin of supply response (area elasticity wrt commodity price) 

, 1( 1)S I
Lε σ θ −≡ − : the intensive margin of supply response (yield elasticity wrt commodity price)  

CES production function (upper case variables are levels of corresponding lower case variables): 

1/(( )( ) ( )( ) )O O L L N NQ A A Q A Qρ ρ ρρ ρ− − −≡ − + −  

Where: 1/ (1 )σ ρ= +  and 1ρ > −   
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Model Applications and Teaching Materials related to the theoretical framework and model 
emulator: https://mygeohub.org/courses/global_change 
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Figure 1: A framework for analyzing long run growth in crop output, land use and prices 

 

 

  



44 

 

Figure 2. Monte Carlo results for 2050 (n=5000)a. Dotted line denotes mean outcome, red bars 
represent 95% CI. Individual model predictions labeled one vertical lines.
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Figure 3. Relative importance of model inputs for future projections based on the Morris Method 
under segmented markets (n=360) 

 

 

 



Table 1. Overview of the models 

Models Source 
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Partial Equilibrium Models 
FAO FAO Country Country Xa X - X - - - - - YSd SS 
GCAM PNNL Regional Sub-regionalg Xb Xb -  X - -  - YS HO 
GLOBIOM IIASA Regional Gridded X X -   e e  - YS HO 
IMPACT IFPRI Country Sub-regional X X  X  - -  - YS HO 
MAgPIE PIK Regional Gridded X X -  - - e  - YSh SS/HOf 
GAPS FAO Country Country X X  X  - -  - YS HO 
T & T OSU Global Regional X X  X - - - - - YS HO 
General Equilibrium Models 
AIM NIES Regional Regional X         PF ARM 
ENVISAGE FAO/WB Regional Regional X   -      PF ARM 
EPPA MIT Regional Regional X         PF ARM 
FARM ERS/USDA Regional Regional/AEZ X         PF ARM 
GTEM ABARES Regional Regional X         PF ARM 
MAGNET LEI/WUR Regional Regional X         PF ARM 

 
Model References: FAO: Alexandratos and Bruinsma (2012), GCAM: Wise and Calvin (2011), GLOBIOM: Valin et al. (2013), IMPACT: Robinson et al (2015), MAgPIE: Lotze-
Campen et al. (2008) GAPS: Kavallari et al. (2016), T & T: Tweeten & Thompson (2008), AIM: Fujimori et al. (2012), ENVISAGE: van der Mensbrugghe (2008), EPPA: Chen et 
al. (2015), FARM: Sands et al. (2014), GTEM: Pant (2014), MAGNET: Woltjer and Kuiper (2014). 
 
Notes:  
a Population is a key driver in FAO projections, but requires fine-tuning by expert judgment 
b GCAM calibrates food demand to FAO's projections.  
c FAO has fertilizer projections and differentiates between rainfed and irrigated land 
d FAO uses expert judgment to drive growth in yields. 
e Non-land input prices are exogenous, Leontief technologies are used. Substitution occurs across discrete technologies 
f Self sufficiency targets are met first, net trade balances based on HO basis 
g Agricultural production is based on some 151 AEZs that align with the demand regions 
h Yields in MaGPIE are endogenous and reflect price sensitive changes to the cost of improving yields.



Table 2. AgMIP global economic comparison for 2050 (2005=100) a 

Models Cereals 
output 

CR5 
output 

Crop 
output 

Crop 
price Cropland 

FAOb 141 158 152 NA 104 
GAPSc NA NA 160 NA NA 
Tweeten & Thompsond 160-175 158-184 154-173 >100 NA 
AIM 169 182 157 146 125 
ENVISAGE 164 191 216 108 119 
FARM 169 193 183 91 94 
GCAM 159 195 182 96 111 
GLOBIOM 164 197 198 99 111 
GTEM 164 175 NA 130 103 
IMPACT 157 193 185 103 109 
MAGNET 186 192 177 84 128 
MAgPIE 168 208 157 NA 118 
Emulator* NA NA 179 86 119 
Emulator** NA NA 161 126 132 

 

Sources: Alexandratos and Bruinsma (2012) with additional calculations by authors, Kavallari et al. (2015), Tweeten & 
Thompson (2008) with additional calculations by authors, von Lampe et al (2014) and Schmitz et al (2014) including 
supplemental materials. Emulator (SIMPLE) results are based on the authors’ calculations: Emulator* corresponds to the case of 
both land and non-land augmenting technical change, whereas Emulator** only has land-augmenting technical change. 

a Based on SSP2. (1) Models had different base years, but were interpolated to a common base year of 2005. (2) Models reported 
results in different units so figures in table represent growth relative to 100 in 2005. (3) Commodity aggregations were done by 
individual modeling teams. (4) Prices reflect percent change relative to GDP deflator (for CGE models). The Emulator* results 
are generated using population and income growth from SSP2, land-augmenting technical change calibrated to intrinsic yield 
projection from the IMPACT model and non-land augmenting technical change which targets future crop TFP growth based on 
global projection from Ludena et al (2008) and regional rates from Fuglie (2012). The final row, Emulator**, omits the non-land 
augmenting technical change. 

b FAO scenario was based on population and GDP projections available circa 2010. Population increases by 41% and GDP by a 
factor of 2.6—compared with the AgMIP figures of 40% for population and a factor of 3.1 for GDP. Note that global growth 
rates are influenced by base year prices and exchange rates. Production growth rates are based on 2005/07 constant price weights. 
The growth in crop land represents the growth in arable land, not harvested land.c Results from GAPS are only provided in 
summary form. Global agricultural production increases by 68% under SSP2 compared to 60% under the Alexandratos & 
Bruinsma (2012) scenario. If we assume the same proportion of crop to global production, the index of global crop production is 
160 compared to the 2012-based projection of 152. 

d Tweeten and Thompson provide population and GDP projections from 1994 to 2050. With interpolation to 2005, global 
population growth is 42%, similar to FAO and SSP2. GDP grows by a factor of only 2, much lower than either FAO or SSP2. 
However, this largely reflects the significant differences in weights between 1994 and 2005/07. For example, their GDP in low 
income countries increases by a factor of over 5. They provide two different scenarios for yield growth that affects supply 
growth—these ranges are provided in the table (after interpolation from 2000 to 2005). The budget shares (from their table 4) are 
used to aggregate the individual commodity groupings. 
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Table 3. Implied Demand and Supply Elasticities for the AgMIP Global Economic Modelsa 

Model Total Demand Extensive Intensive 
Partial equilibrium models 
IMPACT 0.58 0.24 0.37 -0.03 
GCAM 2.80 0.63 2.52 -0.36 
GLOBIOM 0.49 0.28 0.08 0.13 
MAgPIEb 0.36 0 0.18 0.18 
General equilibrium models 
AIM 0.85 0.10 0.92 -0.17 
ENVISAGE 3.22 0.47 1.57 1.18 
FARMb 1.33 0.07 1.30 -0.04 
GTEMb 0.96 0.07 0.52 0.36 
MAGNET 0.93 -0.04 1.23 -0.26 
Emulator 

 1.16 0.29 0.36 0.51 
 

a Elasticities for the PE models are computed by solving equations (1) - (3) using model results for 2050 changes in grains and 
oilseeds output, land use and prices, based on four different yield shocks, thereupon taking the average of these four elasticity 
estimates. Results for the CGE models require modified formulae (production function approach) as discussed in the text. 
Emulator elasticities are obtained via model perturbations.  
b Denotes case where global shock is taken from IMPACT calculations. 
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Table 4. Uncertainty ranges for global drivers and economic parameters  

Exogenous Shocks (p.a. rates) Mode Max Min 
Population  0.78 1.02 0.56 
Per capita income  1.9 2.8 0.73 
Biofuels  3.88 4.72 3.04 
Total Factor Productivity   

Crops  0.94 1.14 0.5 
Livestock  2.11 2.49 0.78 
Processed Foods  0.89 1.05 0.33 

Parameters Mode Max Min 
Demand Elasticities       
   Future Price Elasticities 

  Crops  -0.10 -0.02 -0.31 
Livestock  -0.34 -0.29 -0.5 
Processed Foods  -0.38 -0.29 -0.65 

   Future Income Elasticities 
  Crops  -0.06 0.26 -0.17 

Livestock  0.2 0.49 0.1 
Processed Foods  0.21 0.55 0.1 

Land supply response  0.28 0.56 0.11 
Non-land supply response  1.34 2.68 0.49 
Elasticity of substitution: Crop  3 4.5 0.24 
Elasticity of substitution: 
Livestock  1.16 1.51 0.81 
Elasticity of Transformation:  

 3 3.9 2.1 
Local and Global Markets 

 

Notes: For each driver and parameter, we postulate a global triangular distribution using scalars to convert some of these global 
shocks to regional values (Appendix Table A2). Sources of exogenous growth rates for global drivers are as follows.  

Population and per capita incomes: SSP Projections Database v0.5 (Kriegler et al., 2012; O’Neill et al., 2014) for population and 
per capita income growth rates. The modal values are based on SSP2 projections which are built on the assumption that current 
trends continue. We construct the max and min growth rates for population using SSP3 and SSP1, and SSP5 and SSP3 for 
income growth, respectively. Note that these SSP combinations encompass the full range of expected global population and 
income growth in the SSP database.  

Biofuels: The max and min for global biofuel growth is taken from IEA (2014) New Policies scenario 2012-40 p.a. rate and 
Current Policies scenario 2030-40 p.a. rate while the mode is calibrated to Current Policies scenario 2012-40 p.a. rate. Under the 
IEA scenarios, Current policies reflect projections given governmental energy and emissions policies enacted as of mid-2014 
while New policies build on this projection albeit with cautious implementation of future policies that have not been fully 
developed at the moment (IEA, 2014).  

Total Factor Productivity: Productivity growth is based on TFP estimates. For the crop and livestock sectors, we rely on 
projections by Ludena et al (2007) which assumes eventual convergence of productivity growth across regions. Max and min 
TFP growth rates are based the periods: 2001-20 (the two decades of most rapid projected global growth) and 1961-80 (the 
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slowest historical TFP decades) while modes are based on 2001-2040 rates. Lacking data for processed foods TFP growth, we 
impose the normalized range of livestock TFP growth using estimate from Griffith et al (2004) as the mode.  

Demand Elasticities: Max and min values of future global average demand elasticities reported in the table are based on the full 
range of predicted regional demand elasticities in SIMPLE at base year 2006. Note that demand elasticities in SIMPLE are 
calculated from OLS regressions linking the natural log of adjusted per capita incomes to country-level demand elasticities 
computed by Muhammed et al. (2011) in order to capture the declining responsiveness of consumers to food price change and 
increased food spending on livestock and processed foods at higher income levels.  
 
Supply and Substitution Elasticities: The range of global land supply response is based on the 5-year and 45-year own-price 
elasticities of U.S. cropland from Ahmed et al. (2008) which incorporates information on the response of land to economic 
markets as well as the natural transition of land across uses overtime. Lacking data, we impose the same range for the global non-
land supply response albeit normalized to modal value. The max and min values of input substitution elasticities for crops are 
calibrated using the range of estimates of U.S. corn yield price response assembled by Keeney and Hertel (2009) as a guide. 
Finally, we do not have sufficient data to compute for the ranges of the input elasticity of substitution in the livestock sector and 
the elasticity of transformation between local and global markets. For these parameters, we simply assume that the max and min 
values are +/- 30% of modal values. 


