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Abstract – Despite substantial research and policy interest in pixel level cropland allocation data, 

few sources are available that span a large geographic area. The data used for much of this research 

are often derived from complex modeling techniques that may include model simulation and other 

data processing. We develop a transparent econometric framework that uses pixel level biophysical 

measurements and aggregate cropland statistics to develop pixel level cropland allocation 

predictions. Such pixel level land use data can be used to investigate the impact of human activities 

on the environment. Our framework also provides marginal effects of changes in climatic and 

biophysical factors on cropland allocation at the pixel level, which can be used in a variety of 

research and policy contexts such as to assess the impact of global warming on cropland use. 

Validation exercises show that our approach is effective at predicting cropland allocation at 

multiple levels of resolution.  

 

Keywords – fractional regression, global cropland allocation, biophysical impacts, pixel level 

measurements, quasi-maximum likelihood 

 

Software and Data Availability – Data and programming scripts in GAMS (GAMS Development 

Corporation, 2013) and R (R Core Team, 2015) are downloadable for free from the Fine-scale 

Land Allocation Tool (FLAT), https://mygeohub.org/tools/flat, which is a user interface hosted by 

Purdue University’s MyGeoHUB cyberinfrastructure.  

     

https://mygeohub.org/tools/flat
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1. Introduction 

Agricultural productivity and environmental sustainability are central focuses for policymakers 

and academics. Understanding the interaction between agricultural systems and economic and 

environmental systems is critical for enhancing public policies related to economic development, 

food security, and human well-being. A major component of this interaction is climate change and 

adaptation, for which agriculture is central (e.g., Table 2 in Burke et al., 2015), especially for 

developing nations where the agricultural sector is more important and the impacts of climate 

change are most severe (Auffhammer and Schlenker, 2014; Hertel and Lobell, 2014; Kyle et al., 

2015; Mendelsohn, 2009). Agricultural adaptation is inevitable as climates change and global crop 

production is affected, and the greatest pressure is likely to be on developing countries in which 

the agricultural sector can be highly vulnerable and the capacity to adapt may be the lowest (Hertel 

and Lobell, 2014). As all countries face challenges in adaptation, understanding patterns and 

changes in cropland allocation is central to policy designs geared toward promoting agricultural 

productivity while ensuring environmental sustainability.1  

An important challenge for applied research is a lack of data on cropland allocation below 

the national or subnational level over a wide geographic area. Typically, cropland allocation data 

are collected via national census or survey instruments, and measures the total amount of land 

                                                           
1 Cropland allocation is also closely linked to regional, national, and international food security (Mueller et al., 2014), 

international trade in agricultural commodities (Polasky et al., 2004), international development (Schaldach et al., 

2011; Henderson et al., 2012), environmental issues such as domestic and trans-boundary pollution, groundwater 

quality and consumption, and pest management (Rosegrant et al., 2002; Lapola et al., 2010; Mallory et al., 2011; Fezzi 

and Bateman, 2011), and it is important for urban and regional planning (Burchfield et al., 2006; Klein Goldewijk et 

al., 2010). 
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under crop in a particular state or province. These data, however, do not usually indicate the 

distribution of cropland within that state. Figure 1 illustrates the issue using Mexico as an example. 

In the figure, the color of each state indicates the fraction of the harvested land area for maize in 

the state, with a darker shade of green indicating a greater harvested area in maize. The inset image 

shows a 5-arc minute pixelated grid placed over part of Mexico; researchers and policymakers 

often desire to know the distribution of the total harvested area for maize within a state over a set 

of pixels in the grid in order to understand the effects of changes in economic or biophysical 

conditions. Simply assuming that the pixel level allocation of cropland in a state is equal to the 

aggregate state level allocation is ad hoc, and may mask pixel level heterogeneity that bears 

implications for national and international research and policy.2  

 Previous economic analyses of issues related to land use have demonstrated the benefits of 

using cropland allocation data measured at a fine geographic scale, relative to using the 

state/provincial or national aggregates. For instance, Auffhammer et al. (2013) describe how 

aggregate climate measures mask important spatial heterogeneity that is measureable using 

pixelated data. Hendricks et al. (2014) demonstrate that county averaged data in the United States 

leads to qualitatively significant statistical bias in estimates of crop acreage response to price 

shocks, and advocate using spatially explicit pixel level data to avoid this bias. In short, pixel level 

data is important for research and policy related to cropland allocation because it reflects 

heterogeneity that is germane to land use decisions.  

                                                           
2 Various terms including gridded, parcel, pixel, and fine-scale have been used interchangeably in the literature. To 

avoid confusion, we use the term pixel. 
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Yet, much of the evidence indicating advantages of pixel level data is based on analysis for 

the United States, where pixel level measurements are relatively abundant and are generally 

reliable. Researchers have lamented the dearth of pixel level measurements over a wider 

geographic scale; moreover, data availability and data quality problems are more severe in 

developing countries and regions such as Sub-Saharan Africa, where lack of reliable data limits 

statistical analysis (Auffhammer and Schlenker, 2014; Lobell et al., 2008; Schlenker and Lobell, 

2010). In some countries, observed cropland allocation data (i.e., the data measured by national 

census and survey reports) is simply not available below a national or subnational (e.g., 

state/provincial) level. This lack of widespread availability of pixel level cropland allocation data 

prohibits analysis of land allocation at the pixel resolution across broad regions that researchers 

desire; it also limits the reliability of high spatial resolution environmental models that use land 

use data as inputs. To address these issues, researchers have turned to satellite imagery or 

simulation methods to obtain pixel level measurements of cropland allocation. These data, 

however, have been criticized for being too highly processed and may be difficult to reproduce 

(see discussion below); the contribution in this paper is a statistical approach that simultaneously 

allows us to understand the allocation of harvested area in a particular crop at a pixel level, as well 

as ascertain how marginal changes in climate and other biophysical measurements impact that 

allocation. 

Specifically, we develop a quasi-maximum likelihood estimation framework that can be 

used to predict cropland allocation at a pixel resolution. We first use available information on built-

up land and protected areas to eliminate urban centers and protected areas such as national parks, 

and then use pixel level variation in biophysical factors and the observed aggregate land allocation 

data to determine where in each state/province the crops are located. We apply the framework to 



 

6 
 

the Americas, focusing on application of the proposed approach to two cases:  a single crop model 

for maize and a multi-crop model for maize, soybeans, and wheat.  

The method we develop has the following four virtues. First, in contrast to other methods 

that are currently in use, our approach uses a (modified) fractional regression that is relatively 

simple and transparent. We believe simplicity and transparency are critical; the research that uses 

these data supports policy development with deep international implications. Transparency in the 

data and its handling leads to clearer insights from the research that uses the data. Second, our 

method is relatively parsimonious, and is not dependent on the availability of specialized 

measurements that typically require ad hoc assumptions and complex data manipulations that are 

not motivated by the estimation framework.3 Yet, the method is flexible and can accommodate 

additional variables in the event that they become available. Third, we can recover the marginal 

effects of the variables in the model on the allocation of cropland across the pixels within each 

state. These marginal effects are allowed to be heterogeneous across pixels, and these can be used 

to explore the impacts of perturbations in the climate and land attribute variables on pixel level 

cropland allocation.4 Models that rely on satellite imagery are unable to estimate marginal impacts; 

that is, they can only observe the current situation and cannot project the impact of a change in the 

underlying determinants of cropland allocation. Fourth, the regression framework is developed 

                                                           
3 For example, Li et al. (2014) use travel time to major cities calculated based on transport survey data, speed, routes, 

and road surface conditions, as a measure of transportation costs. This kind of information may not be generally 

available over a large geographic area.  

4 Establishing causality in the climate-cropland context is a difficult and well-known challenge. See Section 2 for 

further discussion.  
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generally, and can accommodate any number of cropping options – i.e., our model allows for either 

a single-crop or multi-crop structure.5  

Our approach for downscaling aggregated data from censuses and other national statistics 

is purposefully different from the methods used by other researchers who have focused on land 

allocation. For instance, Ramankutty and Foley (1998), Ramankutty et al. (2008) and Monfreda et 

al. (2008) combine satellite-derived land cover data with agricultural inventory data to develop a 

global land use database measured at the 5 arc-minute pixel level. The Monfreda et al. (2008) 

dataset is the most comprehensive, spanning 175 distinct crops across the world, and is regarded 

as the standard in economic models of cropland allocation (Hertel et al., 2009). An important 

contribution of our work is that we identify cropland allocations without relying heavily on satellite 

imagery, thus reducing the uncertainties associated with discrepancies across reported land use 

patterns in different sources of satellite images (Ramankutty et al., 2008). This also distinguishes 

our work from You and Wood (2006), who use a cross entropy approach to predict cropland 

allocation that relies on existing satellite-based land cover data, a broad set of biophysical and 

socioeconomic factors, as well as model-generated indicators of land suitability for specific crops 

(FAO, 1981; Fischer et al., 2000). These indicators act as prior information of the most likely crop 

to be found in a given pixel. In contrast, our multi-crop model identifies land suitability based 

solely on the variability of biophysical attributes. Li et al. (2014) estimate land allocation as a 

function of geo-referenced biophysical factors – some of which include crop-specific land 

suitability variables – and spatially explicit producer prices for the Democratic Republic of Congo. 

                                                           
5 Though we focus on cropland allocation, the model is also applicable to any empirical setting in which the outcome 

variable is a share observed at an aggregate level and the conditioning variables are observed at a disaggregated level. 
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Relative to our model, their approach has two main limitations. First, they use a binary outcome 

logit regression model that restricts the allocation within each pixel to a single land use. Second, 

their model adopts pixel (1 km by 1 km) measurements that are not widely available, rendering 

application of their model to a larger geographic area challenging. We believe our approach offers 

several important advantages over these other techniques. As with the data generated using these 

other methods, our data can be used to support counterfactual scenarios with different climate or 

soil settings, bridging the gap between the integrated assessment models (IAMs) and reduced form 

studies (Auffhammer and Schlenker, 2014). 

The rest of the paper proceeds as follows. Section 2 describes our approach. We formalize 

the econometric problem and develop a robust quasi-maximum likelihood framework based 

around a modified fractional logit regression. In Section 3, we illustrate our approach by 

developing empirical models of cropland allocation for maize as a single crop and for multiple 

crops (maize, soybeans, and wheat) simultaneously across North, Central and South America. 

Section 3 also describes the data. Section 4 presents our statistical results including the marginal 

effects of pixelated data on predicted cropland allocation. Section 5 conducts both in-sample and 

out-of-sample validation exercises to assess the predictive performance of the model. We also 

provide evidence that our approach is capable of reliably predicting cropland allocation at the pixel 

level. In Section 6 we demonstrate how the model can be used to develop the pixel level cropland 

allocation data, and Section 7 provides conclusions. 

 

2. Theoretical Framework 

Model Preliminaries 
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We define a land parcel measured at the 5 arc-minute longitude/latitude level as a pixel. Basic 

biophysical land attributes such as temperature, precipitation, and soil pH are available at the pixel 

level; one important reason why these data are more readily available is that they are collected 

from globally positioned monitoring stations. Agricultural land use is observed at a more 

aggregated level – typically, the total area of cropped land and the share of cropped land devoted 

to a particular crop, observed at the subnational administrative unit level (e.g., the state or 

provincial level).6 These data come directly from national census or survey instruments. These 

subnational administrative units are composed of pixels (as in Figure 1). Our goal is to estimate 

the fraction of each individual pixel that is cropped in a particular crop given the available pixel 

level biophysical measurements and aggregate land shares. 

Papke and Wooldridge (1996) propose a quasi-maximum likelihood estimator to analyze 

models with fractional response; Mullahy (2015) extends the model to the case of multivariate 

fractional response. Maximizing a Bernoulli log-likelihood function produces consistent estimates 

of the structural parameters, and a logistic function can ensure that the fitted values are restricted 

to the unit interval (Gourieroux et al., 1984; Wooldridge, 1991). Our case is similar to Papke and 

Wooldridge (1996) and Mullahy (2015), but not identical. The difference is that our conditioning 

variables are measured at the pixel level while the outcome is observed at the administrative level, 

which is more aggregated than the pixel level. In this structure, the outcome does not vary at the 

same level as the regressors, and aggregation is required. 

                                                           
6 Formally, we will call the state or provincial level Administrative Unit Level 1, and we will call the district or county 

level Administrative Unit Level 2. 
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To address this issue, we develop an aggregated fractional response model to accommodate 

the structure of the problem. The added value is that the model is capable of predicting cropland 

allocation at any level of spatial resolution at which the conditioning variables are measured or 

aggregated, regardless of whether the outcome is observed at that level. 

 

Econometric Model and Estimation 

Formally, let 𝑗𝑗 index administrative units for 𝑗𝑗 = {1,2, … , 𝐽𝐽} and 𝑘𝑘 represent crops for 𝑘𝑘 =

{1,2, … ,𝐾𝐾}.7 Let 𝑦𝑦𝑗𝑗𝑗𝑗 be the observed fraction of land area in administrative unit 𝑗𝑗 that is in crop 𝑘𝑘, 

such that 0 ≤ 𝑦𝑦𝑗𝑗𝑗𝑗 ≤ 1. Let 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 be the (unobserved) fraction of cropped land in pixel 𝑖𝑖 in 

administrative unit 𝑗𝑗 that is cropped in crop 𝑘𝑘, where 𝑖𝑖 = {1,2, … , 𝐼𝐼𝑗𝑗} is the pixel index that allows 

the total number of pixels in each administrative unit to vary. Define 𝑿𝑿𝑖𝑖𝑖𝑖 to be an 𝑁𝑁-dimensional 

vector of observable biophysical attributes for pixel 𝑖𝑖 in administrative unit 𝑗𝑗. 

We are interested in estimating the parameters 𝛽𝛽 in the conditional mean for pixel level 

share 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖: 

                                         𝐸𝐸�𝑍𝑍𝑖𝑖𝑖𝑖𝑘𝑘�𝑿𝑿𝑖𝑖𝑖𝑖� = 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖(𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽𝑘𝑘)                                                         (1) 

where 𝑾𝑾(∙): ℝ𝑁𝑁 → ℝ𝑀𝑀 reflects transformations of the fundamental explanatory variables (linear, 

quadratic, interaction, etc.), 𝐺𝐺(⋅): ℝ𝑀𝑀 → ℝ, 0 ≤ 𝐺𝐺(⋅) ≤ 1 is a function that maintains the unit 

interval restriction on the conditional mean. We parameterize 𝐺𝐺(⋅) using a logistic function, and 

the predicted fraction of land in crop 𝑘𝑘 in pixel 𝑖𝑖 in administrative unit 𝑗𝑗 becomes: 

                                                           
7 We derive the model in terms of crops, but note that this econometric model generally fits any context with a similar 

data structure. In our empirical models, the 𝐾𝐾th crop is for all crops not included in 𝐾𝐾 = {1, … ,𝐾𝐾 − 1}. 
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                                 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖�𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽𝑘𝑘� = exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽𝑘𝑘)
∑ exp (𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖)𝛽𝛽𝑘𝑘)𝐾𝐾
𝑖𝑖=1

    where 𝛽𝛽1 = 0.                                 (2) 

The 𝛽𝛽1 = 0 normalization facilitates parameter identification relative to a base cropland allocation. 

We extend equation (2), which is defined at the pixel level, to the administrative unit level via 

aggregation – i.e., the predicted fraction of land in crop 𝑘𝑘 in administrative unit 𝑗𝑗 is equal to the 

average pixel fraction weighted by area. The predicted fraction of land in crop 𝑘𝑘 in administrative 

unit 𝑗𝑗 is  

                                                  𝐻𝐻𝑗𝑗𝑗𝑗 =
∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖�𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽𝑘𝑘�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗
                                                        (3) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 is the area of pixel 𝑖𝑖 in state 𝑗𝑗. Function (3) aggregates our predicted land shares for 

pixel 𝑖𝑖 to the administrative level, hence converting pixel level information to the administrative 

level so that the pixel level land attribute (biophysical) data can be used to explain cropland 

allocation. Given 𝐻𝐻𝑗𝑗𝑗𝑗 the quasi-log-likelihood function to be maximized with respect to the 

parameters 𝛽𝛽𝑘𝑘 is: 

                                                         ℒ = ∑ ∑ 𝑦𝑦𝑗𝑗𝑗𝑗 ln𝐻𝐻𝑗𝑗𝑗𝑗𝐾𝐾
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1 .                                                    (4) 

In addition to being relatively simple to optimize to obtain parameter estimates, the quasi-

maximum likelihood estimator is consistent regardless of the conditional distribution of 𝑦𝑦 given 𝑥𝑥 

as long as the conditional mean is correctly specified and the distribution is a member of the linear 

exponential family (Gourieroux et al., 1984; Wooldridge and Papke, 1996). This makes the 

estimator relatively robust. This method is generally applicable to other cases in which only 

aggregate level data is available for the outcome, but pixel level estimates are desired. This 

framework may also be adapted to a panel data context using a correlated random effects approach 

(Papke and Wooldridge, 2008).  
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Gourieroux et al. (1984) and Wooldridge (1991, 1997) derive the asymptotic variance of 

the quasi-maximum likelihood estimator using the estimated information matrix and the outer 

product of the score. Papke and Wooldridge (1996) and Mullahy (2105) provide expressions for 

the univariate and multivariate fractional logit models; we follow the same asymptotic variance 

calculation but base the formulation at the aggregated state level 𝐻𝐻𝑗𝑗𝑗𝑗. The estimated asymptotic 

variance of 𝛽𝛽𝑘𝑘 is the diagonal of: 

                                                       JBFF /11 −−                                                                            (5) 

where 𝐹𝐹−1 denotes the inverse Hessian and 𝐵𝐵 denotes the outer product of the score.8,9  

 

Cropland Allocation, Marginal Effects, and Policy Analysis 

An important difference in our approach to predicting cropland allocation is that we use variation 

in pixel level biophysical measurements to generate our predictions, rather than relying on satellite 

image derived crop shares for each pixel (e.g., Monfreda et al., 2008). This gives us two unique 

advantages. First, we project cropland allocation based on pixel level biophysical factors and 

aggregate cropland statistics, which allows for estimation when satellite imagery is not available 

or is unable to distinguish between crop types.  

                                                           
8 An alternative is to use a block bootstrap that preserves the pixel to state ratio across the bootstrap replications (i.e., 

sample all pixels from each bootstrap sampled states). The authors’ calculations have shown this bootstrap procedure 

yields standard errors that are virtually identical to those from the asymptotic variance-covariance formulation. 

9 An open access tool deploying this framework is available at https://mygeohub.org/tools/flat. Source code and data 

used in this paper are free to download via the tool user interface. 

https://mygeohub.org/tools/flat
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Second, the econometric approach allows us to derive the effects of marginal changes in 

pixel level biophysical factors on cropland allocation. The marginal effect on the fraction of 

cropland in crop 𝑘𝑘 in pixel 𝑖𝑖 in state 𝑗𝑗 with respect to regressor 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is  

                                                               
𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖(𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖),𝛽𝛽𝑘𝑘)

𝜕𝜕𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
.                                                                             (6)                                                                                                                                                                                                     

The exact form of this marginal effect depends on the transformations in 𝑾𝑾𝑖𝑖𝑖𝑖(𝑿𝑿𝑖𝑖𝑖𝑖) and the 

specification of the index function.  

Given the logistic parameterization of the likelihood model, we also calculate the odds 

ratio. Holding everything else constant, an odds ratio greater than one means that a one unit change 

in X would make the fraction of land in crop 𝑘𝑘 larger, while an odds ratio less than one means that 

a one unit change in X leads to a decrease in the fraction of land in the crop. For the simple case 

that a variable enters linearly into the index function, the odds ratio is exp (𝛽𝛽𝑘𝑘𝑘𝑘). 

  

Remark 2.1 We have described the pixel level measurements as biophysical factors, though 

clearly, economic and institutional forces also have a substantial impact on land allocation and 

crop choice. Our model structure does not preclude the inclusion of additional variables. Currently, 

we are operating under the constraint that measurements of these other factors are not available at 

a pixel level across a broad geographic area, either because the data do not exist, or because factors 

do not vary at a pixel level (such as national or state laws, institutional structures, and in many 

cases, prices). This constraint is not unique to our work. We control for these additional factors to 

the best of our ability using national level indicators (see Section 3).  
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Remark 2.2 The parameter estimates and pixel level predictions are obtained under the 

assumption that factors related to political and economic differences (e.g., laws, agricultural 

policies, consumer preferences, etc.) are held constant via the indicators. Likewise, the marginal 

effects should be interpreted as a (potential) re-allocation of cropland induced by changes in 

biophysical measurements, holding the country level factors constant. 

           

3. Data and Empirical Models 

We develop two empirical applications: a single-crop model for maize, and a multi-crop model of 

maize, soybeans, and wheat. For both models, we focus on harvested crop area spanning North, 

Central and South America. The 5 arc-minute resolution is a commonly used pixel measurement 

(Ramankutty and Foley, 1999; Erb et al., 2007), and yields pixels of about 100 square kilometers 

at the equator, 60 square kilometers in Minnesota, and nearly zero square kilometers near the 

north/south pole. Table A.1 in the appendix provides a comprehensive list of all data we employ, 

including the units of measurement and source.  

 

Harvested Land Area 

We use data series of built-up land and protected areas to exclude pixels that are in urban centers 

or protected areas such as national parks and forests. Total area in a pixel, 𝐴𝐴𝑖𝑖𝑖𝑖, is calculated based 

on longitude and latitude. The total land area in an administrative unit is collected from Statoids 

(see Table A.1). We restrict the sample of states to countries that have administrative units with at 

least 0.5 percent total land area in maize for the maize model and at least 0.5 percent total land 

area in each of the three crops for the multi-crop model. This excludes administrative units where 
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area in these crops is negligible. We also require that the sum over the shares of cropland in maize, 

soybeans, and wheat does not exceed 1 for the multi-crop model.10   

The total areas of land harvested in maize, soybeans, and wheat at Administrative Unit 

Level 1 are collected from FAO Agro-MAPS (see Table A.1), which is the largest source of 

subnational agricultural harvested land area data (Monfreda et al., 2008). These data come from 

national or subnational census or survey statistics. In these data, the years for which harvested area 

data is available vary across countries; to build our sample we choose the years that are closest to 

the year 2000 to form a circa 2000 dataset (Ramankutty et al., 2008 also use a circa 2000 dataset). 

For example, state level harvested maize area data for the United States is not available for the 

year 2000 from Agro-MAPS, so instead we use 2001 data. For most of the countries in our analysis 

the data measurements come either from the year 2000/2001 or from the mid-late 1990s; the largest 

difference is for Costa Rica, for which the data is measured in 1984. The gaps in these data arise 

because the national censuses and surveys are typically done at five year intervals. Further, not 

every administrative unit has data for maize, soybeans, and wheat, and not every unit is reported 

in Agro-MAPS. Hence we only include units with reported FAO data. Since there are a few cases 

where the names of the units have changed in recent years or a unit has been divided into separate 

units, we verify the administrative divisions using the CIA World Factbook and Global 

Administrative Areas (GADM) database (see Table A.1) to ensure a consistent set of 

administrative units for circa 2000.   

 

                                                           
10 There are a few states for which the sum of land shares in maize, soybeans, and wheat is greater than 1. This can be 

a result of multiple cropping seasons, or data inconsistencies. We leave these issues for future research.   
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Pixel Level Biophysical Data 

The land attribute data comes from Villoria and Liu (2015) and includes biophysical variables to 

measure biophysical conditions that influence crop choice. These variables include the average 

temperature over the growing season in degrees Celsius, average annual precipitation in meters, 

elevation in thousands of meters, the soil pH level (defined over the range 0 - 14), soil carbon 

content (kg per square meter, 0 to 1 meter depth), land slope (from almost flat to steep, 0.0025 - 

0.725), and latitude. Elevation and latitude data are at the 5-minute degree level; other variables 

are available at a 30 arc-minute resolution and are downscaled assuming all the 5-minute degree 

cells within a 30-minute degree cell have the same value. Our preferred specification is quadratic 

in temperature, precipitation, and latitude. The interaction between temperature and precipitation 

is also included; this specification of temperature and precipitation is similar to that used by Lobell 

et al. (2011), Lobell et al. (2013), Schlenker et al. (2006), and Schlenker and Roberts (2009). We 

define soil pH to be the soil pH deviation from pH6.5 as pH6.5 is approximately optimal for maize, 

soybeans, and wheat (Lerner and Dana, 2001; Mallarino et al., 2011).11 We expect the fraction of 

a pixel that is cropped in maize to decrease with an increase in the deviation (above or below) of 

soil pH from the optimal pH6.5 level. To allow the response above pH6.5 and below pH6.5 to be 

asymmetric, we include two variables max(pH6.5-pH, 0) and max(pH-pH6.5, 0). Table 1 reports 

descriptive statistics for the variables, divided into the North, Central and South American regions. 

 

Indicator Variables and Final Sample 

                                                           
11 http://www.cropnutrition.com/efu-soil-ph#soil-acidity. Accessed on Aug 30, 2015. 

http://www.cropnutrition.com/efu-soil-ph#soil-acidity
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We add binary indicators for each country included in the analysis (see Table 2 for included 

countries), with a group of South American countries (Ecuador, Peru, Paraguay, and Uruguay) 

excluded as the base group for the maize model. These indicators allow us to account for political 

and economic factors that influence crop production but are unobservable and/or do not vary 

within each country. For the multi-crop model, we include country indicators for Argentina and 

the United States and use the rest of the countries as the base.12  

Based on our selection criterion, 196 administrative units from 18 countries are included 

in the maize model. These countries are listed in Table 2 with the number of states included from 

each country in parentheses. For the multi-crop model, a total of 40 states from 5 countries are 

included. 

 

4. Parameter Estimates and Marginal Effects 

The Single-Crop Model 

The coefficient estimates and standard errors for the maize model are reported in Table 3, and the 

implied marginal effects and odds ratios are reported in Table 4.13 These coefficient estimates and 

marginal effects can be immediately deployed in a variety of policy analysis contexts to understand 

how changes in biophysical factors might influence cropland allocation. Temperature, 

                                                           
12 Five countries are included in the multi-crop model based on the sample selection criteria. Different model 

specifications show that the model with Argentina and United States indicators yields the lowest root mean squared 

error.  

13 Following Greene (2010), we assess statistical significance in our model via the t-values on the parameters, and 

then report and draw economic conclusions directly from the implied marginal effects. 
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precipitation, soil pH (both deviations below and above pH6.5), soil carbon, slope, and latitude are 

all statistically significant. Temperature has a positive impact on the fraction of maize in a pixel. 

The average temperature of the growing season in our sample is 19.34 degrees Celsius. All else 

equal, a one degree Celsius increase in temperature above this average increases the fraction of 

maize by about 0.35 percent (Table 4). The average precipitation in our sample is 1 meter. All else 

equal, a one meter increase in precipitation increases the maize fraction by about 1.03 percent. In 

Figure 2a we plot the relationship between temperature, precipitation, and the predicted fraction 

of maize, evaluating all observations at the base group for the country indicators while holding 

other variables constant at their mean. The average growing season temperature ranges from -0.17 

to 28.67 degrees Celsius and the average precipitation is between 0 and 5.67 meters. At low levels 

of precipitation, as temperature increases the maize fraction first increases and peaks around 10 

degrees Celsius, then decreases to about 0. Holding temperature constant, the maize fraction 

increases first, then drops to about 0. At low levels of precipitation, an increase in precipitation 

leads to a rapid increase in the maize fraction, while at higher levels of precipitation, a further 

increase in precipitation does not affect the maize fraction.  

Deviation from the optimal soil pH of 6.5 decreases the fraction of maize. A decrease in 

pH below pH6.5 reduces the maize fraction by about 7.87 percent, and an increase in pH above 

pH6.5 reduces the fraction of maize by about 13.83 percent. Average soil carbon content is 5.83 

kg per square meter; the maize fraction increases by about 1.34 percent as soil carbon content 

increases by 1 kg per square meter. Slope has a negative impact on the fraction of maize. As land 

becomes steeper, the maize fraction decreases. Latitude has a positive impact on maize fraction 

for the studied area. As latitude increases, the maize fraction increases.   
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To further investigate the relationships among the variables and the fraction of maize, we 

plot the maize fraction as a function of each variable, holding the other variables constant at their 

means (Figure 2b). Pixel level soil pH ranges from 4.20 to 8.17, and deviation from above and 

below the optimal soil pH of 6.5 leads to a decrease in the maize fraction. Latitude ranges between 

-40.96 and 56.79 degrees. We see an increase moving from South to North America. 

 

The Multi-Crop Model 

Similar to the maize model, we report the coefficient estimates for each regressor in the multi-crop 

model in Table 5. The significance of these variables varies across crops. Temperature and 

precipitation are significant for maize and soybeans. Temperature squared and the interaction 

between temperature and precipitation are significant for all three crops. Precipitation squared is 

significant for soybeans, but not for maize and wheat. The land attribute variables – slope and soil 

pH above pH6.5 – have a significant impact on the crop fraction for all three crops. Elevation,  soil 

pH below pH6.5, and latitude, have a significant impact on the maize and soybean fractions,  

Implied marginal effects and odds ratios are displayed in Table 6.  

Temperature has a negative impact on the fraction of all three crops on average within the 

studied area. The average temperature of the growing season in our sample of administrative 

regions is 18.39 degrees Celsius. A one degree Celsius increase in temperature above this average 

decreases the fraction of maize by 1.19 percent, soybeans by 2.48 percent, and wheat by 0.51 

percent, indicating that maize and soybeans are more sensitive to changes in temperature than 

wheat. Precipitation has a negative impact on the fractions of soybeans and wheat, but a positive 

impact on maize. Specifically, a one meter increase in precipitation from the average level of 0.95 

meters leads to an increase in the fraction of maize of 20.41 percent, and a decrease in the fraction 
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of soybeans of 22.57 percent, and wheat of 1.34 percent. Deviation in soil pH from pH6.5 has a 

negative impact on maize, soybeans, and wheat, and slope has a negative relationship with 

soybeans and wheat. Latitude, on average, has a positive relationship with the fractions of all three 

crops, meaning that as we move north to states in the Northern United States, crop fractions tend 

to increase. The calculated odds ratios imply similar results as the marginal effects.  

Figure 3(a) shows a 3-dimensional plot of the relationship between temperature, 

precipitation, and the soybean fraction. The lowest average temperature in the growing season 

across all included states is 8.33 degrees Celsius, and the highest is 27.00 degrees Celsius. As 

temperature increases, the soybean fraction first increases and decreases slightly, then increases 

and decreases; the minimum level of average annual precipitation is 0.07 meters, and the maximum 

is 1.94 meters; as precipitation increases, the soybean fraction decreases then increases.  

Graphical illustrations for the other variables that have statistically significant impacts on 

the soybean fraction are shown in Figure 3(b). Elevation has a negative impact on soybean fraction. 

The minimum soil pH is 4.90. Deviation from below the optimal soil pH of 6.5 leads to a decrease 

in the soybean fraction. The maximum soil pH is 8.05. Soybean fraction increases in the studied 

area when soil pH deviates from 6.5. Slope has a negative impact on the soybean fraction: as land 

gets steeper the soybean fraction decreases. Latitude has a positive overall impact on the soybean 

fraction. Moving towards the Northern Hemisphere, the soybean fraction first increases, then stays 

high around the Central American countries and Mexico, then decreases moving further north 

passing the United States Corn Belt.  

 

5. Model Validation 

In-Sample and Out-of-Sample Validation 
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In general, the estimated relationship between the biophysical variables and the crop fraction 

within each pixel is consistent with our expectation. We now validate the predictive power of our 

model, considering both in-sample and out-of-sample validation. By out-of-sample validation, we 

mean that the estimation relies on Level 1 data, and we validate our results using Level 2 data. 

Ideally, Level 2 data should add up to Level 1 values. However, we do not have complete Level 2 

data for all counties/districts, but using the available Level 2 data enables us to validate prediction 

at a spatial level that is finer than the level of data that we use to estimate the model. To validate, 

we compare the crop fraction predicted by our model to the actual crop fraction reported by FAO 

Agro-MAPS at both Administrative Levels 1 and 2. Level 2 FAO data are available for only 108 

states for the maize model, and 32, 35, and 35 states for the multi-crop model for maize, soybean, 

and wheat. USDA NASS Quick Stats includes more Level 2 units (counties) in their database for 

the United States; for Level 2 validation for the United States, we rely on USDA NASS data instead 

of Agro-MAPS Level 2 data.  

The predicted fraction of a crop in each pixel comes from equation (2) given the estimated 

parameters. The predicted harvested area for a crop in a pixel equals the total land area in the pixel 

times the fraction of the pixel that is in that crop. Summing over the predicted crop area in all the 

pixels in each Level 1 or 2 unit yields the total predicted area in that crop for the unit. To create 

the validation plot at the Administrative Unit Level 2, we first scale the predicted fractions at the 

pixel level so that the predicted total maize fraction at Level 1 matches the FAO fraction. Then we 

plot the estimation results at Level 2 based on the scaled fractions. 

Figure 4 graphically displays the prediction results at Level 1 and Level 2 for the single-

crop maize model – the horizontal axis shows the model predicted maize fraction and the vertical 

axis shows the FAO maize fraction. The dashed diagonal line in each plot represents the 45 degree 
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line; the closer the points are to the 45 degree line, the better the prediction. As is illustrated, the 

points generally cluster around the 45 degree line at both levels, indicating that the model generally 

predicts well. To more precisely measure the correlation between the predicted Level 1 fraction of 

maize and the observed FAO Level 1 maize fraction, we regress the predicted fraction on the 

observed FAO fraction. The regression line is shown by the solid line (in red) in each plot. In the 

case of ideal prediction, we expect that the intercept coefficient is equal to zero, and the slope 

coefficient is equal to one. At the Administrative Unit Level 1, the estimated intercept coefficient 

is -0.003, and is not statistically different from zero; the estimated slope coefficient is 1.06, and is 

not statistically different from 1. In addition, we compute the squared correlation between the 

predicted and FAO maize fraction as an R-squared, which is 0.72. 

At Level 2, the intercept coefficient is 0.04, and is significantly different from zero; the 

slope parameter is 0.96, and is significantly different from one. The squared correlation between 

the predicted and FAO maize fraction is 0.15.  

We report the results from similar validation exercises for the multi-crop model in Figures 

5(a) and 5(b). The figures show that at both Administrative Unit levels the points are all close to 

the 45 degree line, which indicates that the multi-crop model predicts well by both in-sample and 

out-of-sample metrics. The squared correlation is 0.8930 for maize, 0.8569 for soybeans, and 

0.6383 for wheat.  

From these validation exercises, we find that at Level 1, for which we have crop harvested 

area data, the prediction results are closer to the FAO numbers than those at Level 2. However, 

considering our parsimonious set of land attribute variables, and that we do not have any crop 

specific variables, all the fractions are identified from the variation of crop shares at Level 1.  
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Relative Performance of the Single and Multi-Crop Models 

To assess the relative performance of the single and multi-crop models, we calculate the root mean 

squared error (RMSE): 

                  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝐽𝐽
∑ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗 − 𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗�
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2.                (8) 

Table 7 shows the RMSE values for the maize model (with 196 states) and the multi-crop model 

(with 40 states), both at Administrative Levels 1 and 2. For these samples, the multi-crop model 

predicts slightly better at Level 1 for the maize fraction compared to the maize model. It is possible 

that the relatively better performance of the multi-crop model arises because it incorporates three 

types of crops; it is also possible that the differences in predictive performance arises because the 

samples are different. Both models predict relatively worse at Level 2 compared to each model’s 

own performance at Level 1; yet the Level 2 prediction is out-of-sample.  

We also consider the relative predictive performance of the single and multi-crop models 

using an identical sample of observations. With the same 40 states, the RMSE values for the maize 

model are 0.0396 at Level 1 and 0.2585 at Level 2. Compared to the RMSE values for the multi-

crop model in Table 7, the maize RMSE is slightly worse at both Level 1 and Level 2, which 

indicates that when the sample is the same, the performance of the multi-crop model is better.  

 

Validation against Alternative Data Sources 

To provide additional insight into the reliability of our cropland predictions, we validate our 

predictions against two additional sources. The first is the Monfreda et al. (2008) predictions, given 

their widespread use in applied research. The second source is the USDA Cropland Data Layer 

(CDL), which is built on high resolution satellite images and agricultural surveys for several states 
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in the United States and estimates crops growing in the field in June. For the available states, we 

take the CDL to be the benchmark (ground truth). For the year 2001 (the year of the United States 

data), the CDL has 30 by 30 meter pixel data for Illinois, Indiana, Iowa and North Dakota. To 

ensure comparability we aggregate the CDL pixels to match our pixel size and calculate the 

corresponding fractions. We compare the CDL crop shares to those from our maize model, multi-

crop model (for maize), and the Monfreda et al. (2008) predictions.  

Table 8 shows the correlations at the pixel level for all four states across the four measures 

of predicted maize fractions. The correlations between different model estimates are relatively 

close for states where maize is the primary crop (Illinois, Indiana and Iowa). For North Dakota, 

other crops (wheat, soybeans, sunflowers, canola, and barley) all take higher percentages of 

cropland than maize;14 our models do not perform as well as the other models. We also check the 

performance of Monfreda et al. (2008) for maize for all 196 states included in our estimation, at 

both Level 1 and Level 2. The Level 1 RMSE is 0.02, and the squared correlation is 0.88; the Level 

2 RMSE is 0.20, and the squared correlation is 0.15. Considering that both the CDL data and 

Monfreda et al. (2008) approach take into account a much larger number of crops, both are based 

on satellite imagery, and Monfreda et al. (2008) also incorporate Level 2 if data is available, it is 

not surprising that their predictions are closer to each other. However, the results indicate that in 

general, we are able to achieve comparably good estimates based on a rather parsimonious set of 

dependent and independent variables, without using satellite imagery to isolate crop location.  

 

6. Illustrating the Pixel-Level Predictions 

                                                           
14 https://nassgeodata.gmu.edu/CropScape/ 

https://nassgeodata.gmu.edu/CropScape/
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We provide two illustrations of the pixel-level cropland predictions generated by our model. In 

each case, we compare predictions from a naïve approach that assumes that the fraction of maize 

in each pixel is equal to the aggregate FAO Level 2 fraction of maize. That is, a constant (pixel 

level) fraction within each Level 2 area. The second approach uses our model and the pixel-specific 

shares. The first illustration is for Hidalgo, Mexico, and is shown in Figures 6(a) and 6(b). Colors 

from yellow to dark red indicate an increasing share of maize. We pick Hidalgo as our first example 

for two reasons. First, FAO Level 2 data is available for all 84 districts of Hidalgo, enabling us to 

fully compare the prediction results with FAO data. Second, there is relatively high variation in 

the fractions of maize within Hidalgo, making it an interesting case for comparison.  

Figure 6(a) shows that the constant fraction approach predicts that the pixels in the north-

central part of Hidalgo have a lower fraction of maize, and the pixels in the north-eastern and part 

of the south-eastern regions have higher fractions of maize. The model results in Figure 6(b) are 

quite different: the model predicts that a larger number of pixels in the northern part of Hidalgo 

have a low fraction of maize, and a larger number of southern pixels have a higher fraction of 

maize. As a means of validation, we compare the FAO Agro-MAPS state level data with data 

collected from the Agrifood and Fisheries Information Service of Mexico (Servicio de Información 

Agroalimentaria y Pesquera, SIAP México). The correlation between FAO and SIAP data is 0.85, 

which provides reasonable assurance that the Level 1 FAO data for Mexico is reliable. However, 

district level harvested area data for maize is not available from SIAP, so we are not able to validate 

FAO district level data for Hidalgo. Nonetheless, further investigation confirms the credibility of 

our downscaled predictions: the south-eastern part of Hidalgo is home to the Valley of Tulancingo 

which is known for being one of the most fertile parts of the Valley of Mexico – a largely 

agricultural area. Further, the north-eastern part of Hidalgo is largely forest. Our model correctly 
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identifies that the south-eastern part is the part of Hidalgo where most of the maize is grown; and 

there is less maize in the north-eastern area. These spatial patterns further indicate the predictive 

capability of our model, but more importantly comparison of Figure 6(a) and 6(b) highlights the 

dangers in simply applying a uniform share to all pixels based on an aggregate share when 

downscaling. 

Similarly, we generate two sets of downscaling predictions for harvested maize area in the 

United States – one with the average USDA Level 2 fraction applied to all pixels within a county 

where Level 2 data is available, and the other with our scaled predicted pixel level fractions. Figure 

7(a) shows the USDA maize fraction plot at the pixel level assuming that all the pixels within each 

Level 2 unit have the same maize fraction that equals to the USDA Level 2 maize fraction for that 

unit and 7(b) presents the pixel level predicted maize fraction plot scaled using the FAO Level 1 

maize total harvested area. The plots are alike for most areas. The northwestern corner of 

Minnesota stands out as our model predicts a higher maize fraction than FAO. Given that USDA 

NASS data indicates the primary crops in that area are wheat and sugar beets, our over-prediction 

of maize is not surprising since our empirical model focuses on three major crops across a large 

geographical area only, rather than incorporating locally important crops. But with the flexibility 

offered by our framework, a potential study is to build a more comprehensive model including 

more crops.  

These illustrations show that our model predicts well over a large geographic scale.  

 

7. Conclusion 

We develop a statistical method for predicting pixel level cropland allocation across a (large) 

geographic area in which pixel-level measurements are not available. Specifically, we develop a 
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fractional response model that combines measurements of pixel level land attributes with 

observable aggregate land use patterns to predict the share of cropland allocated to a certain crop 

at the pixel level. We formulate the likelihood function and demonstrate application to a single-

crop model for maize and a multi-crop model for maize, soybeans, and wheat. We show that both 

the single-crop and multi-crop models at the Administrative Unit Levels 1 and 2 are reasonably 

precise in predicting cropland allocation at the pixel level. 

Our statistical model and land allocation predictions provide applied scientists with 

measurements of land allocation at a pixel level, and with important advantages over previous 

measurements. First, the statistical framework is straightforward and transparent. This allows users 

of the model to gain a clear understanding of the relationship between the explanatory variables 

and the allocations. Second, while the model returns fractional estimates of cropland allocation in 

each pixel, the model also provides estimates of the marginal impacts of the variables on the pixel 

level allocations, which can be used in a variety of different contexts, such as in the case of climate 

change. Third, the framework is flexible, and variables can be easily added if reliable data are 

available. For instance, if a variable such as travel time to markets is available, the model could be 

used to assess the impact of road infrastructure investments on cropping patterns. Finally, while 

we focus on North, Central and South America, our model can be readily applied to any continental 

or geographic area, such as Africa, where pixel level cropland allocation data is critically needed 

but not readily available. 
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Figure 1. Observed FAO maize fraction data for Mexico at Administrative Unit 1. The inset 
image illustrates the pixelated land grid.  
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Figure 2(a). Estimated relationship between temperature, precipitation, and the fraction of maize 
for the single-crop maize model. 
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Figure 2(b). Estimated relationship between elevation, soil pH, soil carbon, slope, latitude and 
the fraction of maize for the single-crop maize model. 
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Figure 3(a). Estimated relationship between temperature, precipitation, and the soybean fraction 
for the multi-crop model. 
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Figure 3(b). Estimated relationship between elevation, soil pH, slope, latitude, and the soybean 
fraction for the multi-crop model. 
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Figure 4. Comparison between the predicted maize area fraction versus observed FAO maize 

area fraction at Administrative Unit Levels 1 (left) and 2 (right). 
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Figure 5(a). Comparison between the predicted area fraction versus the observed FAO area fraction for maize, soybeans, and wheat at 

Administrative Unit Level 1 for the multi-crop model. 
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Figure 5(b). Comparison between the predicted area fraction versus the observed FAO area fraction comparison for maize, soybeans, 
and wheat at Administrative Unit Level 2 for the multi-crop model.
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Figure 6(a). Pixel level maize fraction predictions for Hidalgo, Mexico using constant FAO 

Level 2 shares for all pixels within each Level 2 area. 

 
Figure 6(b). Pixel level maize fraction predictions for Hidalgo, Mexico using the estimated pixel-

specific maize shares. 
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Figure 7(a). Pixel level maize fraction predictions for the United States using constant FAO 

Level 2 shares for all pixels within each Level 2 area. 

 
Figure 7(b). Pixel level maize fraction predictions for the United States using the estimated 

pixel-specific maize shares. 
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Table 1. Descriptive statistics of the biophysical variables measured at the pixel level 

 Variable Mean Standard 
Deviation 

Min Max 

North 
America 

Temperature 16.6598 6.0868 1.8333 28.6667 

 Precipitation 0.8131 0.3612 0.0680 3.2580 
 Elevation 0.5685 0.6012 -0.2270 3.7040 
 Max(pH6.5-

pH,0) 
0.4662 0.6172 0.0000 2.3000 

 Max(pH-
pH6.5,0) 

0.3423 0.4661 0.0000 1.6650 

 Soil Carbon 6.3510 2.8951 1.6080 22.3560 
 Slope 0.0562 0.0649 0.0025 0.3750 
 Latitude 37.3264 9.6123 14.6250 56.7917 
      
Central 
America 

Temperature 23.4744 2.5139 15.8333 27.5000 

 Precipitation 2.2560 0.7393 1.1420 4.6780 
 Elevation 0.6743 0.6086 -0.1970 3.3000 
 Max(pH6.5-

pH,0) 
0.6111 0.4224 0.0000 1.4000 

 Max(pH-
pH6.5,0) 

0.0304 0.1011 0.0000 0.6400 

 Soil Carbon 6.8998 1.7396 3.9840 12.7240 
 Slope 0.1340 0.0876 0.0025 0.3750 
 Latitude 13.2632 2.1562 7.2917 16.0417 
      
South 
America 

Temperature 22.4933 3.9667 -0.1667 28.5000 

 Precipitation 1.1810 0.4937 0.0000 5.6670 
 Elevation 0.5644 0.7089 -0.1320 4.7830 
 Max(pH6.5-

pH,0) 
0.6903 0.6087 0.0000 1.8690 

 Max(pH-
pH6.5,0) 

0.1940 0.3918 0.0000 1.5630 

 Soil Carbon 5.1467 1.6458 1.3250 13.1830 
 Slope 0.0535 0.0647 0.0025 0.3750 
 Latitude -18.5371 11.9075 -40.9583 11.4583 

Note: We follow the CIA World Factbook (https://www.cia.gov/library/publications/the-world-
factbook/) division of the Americas. Our data includes the North American countries Canada, 
United States and Mexico; the Central American countries Costa Rica, Guatemala, Honduras, 
Nicaragua and Panama; the South American countries Argentina, Bolivia, Brazil, Chile, Colombia, 
Ecuador, Paraguay, Peru, Uruguay and Venezuela.  

https://www.cia.gov/library/publications/the-world-factbook/
https://www.cia.gov/library/publications/the-world-factbook/
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Table 2. List of countries in each model with the number of administrative units in the sample 

Maize Model 

Argentina (9) Bolivia (3) Brazil (18) Canada (1) 

Chile (3) Colombia (6) Costa Rica (2) Ecuador (10) 

Guatemala (12) Honduras (14) Mexico (29) Nicaragua (17) 

Panama (5) Peru (8) Paraguay (13) Uruguay (5) 

United States (28) Venezuela (13)   

    

Multi-crop Model 

Argentina (8) Brazil (3) Mexico (2) Paraguay (5) 

United States (22)    

Note: In the maize model, we include only the states in which there is at least 0.5 percent cropland 
in maize. In the multi-crop model, we require each state to have at least 0.5 percent cropland in 
each crop. The numbers indicated in parentheses after the country names are the number of states 
included for the country. 
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Table 3. Quasi-maximum likelihood estimates and standard errors for the maize model 

Variable Coefficient Standard Error 

Intercept -7.1552*** 1.9488 

Temperature 0.5818*** 0.1575 

Temperature Squared -0.0212*** 0.0041 

Precipitation -0.5780 0.7133 

Precipitation Squared -0.5841*** 0.1407 

Temperature∙Precipitation 0.1142*** 0.0278 

Elevation -0.0623 0.2810 

Max(pH6.5-pH,0) -0.9227*** 0.2031 

Max(pH-pH6.5,0) -1.6218*** 0.3832 

Soil Carbon 0.1566*** 0.0467 

Slope -6.1423** 2.2885 

Latitude 0.0442** 0.0148 

Latitude Squared 0.0004 0.0005 

Argentina Indicator 0.3924 0.3001 

Bolivia Indicator 0.6112 0.5155 

Brazil Indicator 1.4320*** 0.3004 

Canada Indicator -3.9650*** 1.2771 

Chile Indicator 0.3771 0.5265 

Colombia Indicator -0.3332 0.3274 

Costa Rica Indicator -0.7427* 0.4387 

Guatemala Indicator 1.1551* 0.5781 

Honduras Indicator 0.1313 0.5390 

Mexico Indicator 0.4500 0.6413 

Nicaragua Indicator 0.7408 0.4616 

Panama Indicator 0.0518 0.4615 

United States Indicator -1.8866 1.1502 

Venezuela Indicator 0.4996 0.4798 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 4. Implied marginal effects and odds ratios for the single-crop maize model 

Variable Marginal Effect Odds Ratio 

Temperature 0.0035 0.8900 

Precipitation 0.0103 1.1195 

Elevation -0.0053 0.9396 

Max(pH6.5-pH, 0) -0.0787 0.3974 

Max(pH-pH6.5, 0) -0.1383 0.1976 

Soil Carbon 0.0134 1.1695 

Slope -0.5240 0.0022 

Latitude 0.1055 2.5666 

Note: The marginal effects and odds ratios are averages over all included pixels. 
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Table 5. Quasi-maximum likelihood estimates and standard errors for the multi-crop model 

Variable Maize Soybeans Wheat 

Intercept 9.6632 

(11.0798) 

18.7251* 

(8.9678) 

5.8832 

(14.4399) 

Temperature 2.8774*** 

(0.8463) 

2.7152*** 

(0.6468) 

1.0892 

(0.7522) 

Temperature Squared -0.1183*** 

(0.0317) 

-0.1135*** 

(0.0263) 

-0.0575* 

(0.0313) 

Precipitation -20.7500** 

(8.6990) 

-26.1529*** 

(7.1030) 

-15.3136 

(9.5744) 

Precipitation Squared 2.8250 

(2.0965) 

4.4937** 

(1.6356) 

0.5055 

(2.0077) 

Temperature∙Precipitation 0.6872* 

(0.4006) 

0.7069 

(0.3521) 

0.6722* 

(0.3946) 

Elevation -4.4991** 

(1.6392) 

-7.2887*** 

(1.5197) 

-1.3311 

(2.7430) 

Max(pH6.5-pH,0) -1.9599*** 

(0.3199) 

-2.2358 *** 

(0.2599) 

-0.6687* 

(0.3482) 

Max(pH-pH6.5,0) -3.4518** 

(1.1302) 

-2.8158** 

(1.1435) 

-0.2465 

(0.7782) 

Soil Carbon 0.1437 

(0.1431) 

0.0761 

(0.1545) 

0.1245 

(0.1322) 

Slope -16.3140* 

(8.6467) 

-23.6936** 

(9.8526) 

-26.5373* 

(14.6707) 

Latitude 0.3169*** 

(0.0601) 

0.3403*** 

(0.0413) 

0.0715 

(0.0594) 

Latitude Squared -0.0067** 

(0.0024) 

-0.0083*** 

(0.0023) 

-0.0031 

(0.0043) 

Mexico Indicator -1.2862*** 

(3.1985) 

-1.6414*** 

(2.4062) 

-0.7098 

(3.3592) 

United States Indicator -19.8621*** 

(4.0114) 

-21.2622*** 

(2.7395) 

-4.6801 

(3.7104) 

Note: *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 6. Implied marginal effects and odds ratios from the multi-crop model for maize, soybeans, and wheat 

Variable Maize  Soybeans  Wheat 

Marginal Effect  Odds Ratio Marginal Effect  Odds Ratio Marginal Effect  Odds Ratio 

Temperature -0.0119 0.7330  -0.0248 0.7585  -0.0051 1.1831 

Precipitation 0.2041 3.9022 -0.2257 32.8382 -0.0134 2.7792 

Elevation 0.2219 10.0657 -0.4400 0.0382 -0.0024 70.6299 

Max(pH6.5-pH, 0) 0.0066 0.8911 -0.0788 0.5189 -0.0046 3.0646 

Max(pH-pH6.5, 0) -0.0968 0.3468 -0.0061 1.1989 0.0050 9.5469 

Soil Carbon 0.0079 1.0947 -0.0049 0.9820 0.0018 1.0646 

Slope 0.5607 18.7818 -1.2198 0.0002 -0.3749 0.0001 

Latitude 0.0163 1.3702 0.0107 1.3750 0.0021 1.1277 

Note: The marginal effects and odds ratios are averages over all included pixels. 
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Table 7. RMSE values for the maize model and the multi-crop model at Levels 1 and 2 

 Level 1 Level 2 

Maize Model 

Maize 0.0270 0.1902 

   

Multi-crop Model 

Maize 0.0215 0.2554 

Soybeans 0.0261 0.5205 

Wheat 0.0242 0.1516 
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Table 8. Correlations between different model estimated pixel specific maize fractions 

 Illinois Indiana Iowa North Dakota 

Maize Model vs. CDL 0.6317 0.6492 0.6303 0.1721 

Multi-crop Model vs. CDL 0.6051 0.6013 NA 0.3555 

Maize Model vs. Monfreda et al. 0.7590 0.6716 0.6101 0.2892 

Multi-crop Model vs. Monfreda et al. 0.7524 0.6277 NA 0.5733 

CDL vs. Monfreda et al. 0.7792 0.8459 0.7841 0.7277 

Note: Iowa is not included in our multi-crop model due to an insufficient land area for wheat. 
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Appendix 

Table A.1 Definition of variable measurement and data source 
Name Description Source 
Temperature Average monthly temperature in degrees Celsius over the 

period 1961-1990; For countries in the Northern 
Hemisphere the growing season is March through 
August, whereas the growing season for countries in the 
Southern Hemisphere is September through February. 

New et al. (1999) 
http://www.sage.wisc.edu/atlas/index.php, 
accessed May 25, 2015 

Precipitation Average annual total precipitation in meters/year over the 
period 1961-1990. 

New et al. (1999)  
Same web link and access date as above 

Elevation Meters above sea level on a 5-minute resolution. United States National Geophysical Data Center 
TerrainBase global model of terrain and 
bathymetry (1995)  
Same web link and access date as above 

Soil pH Soil pH (0-14). SoilData System, Global Soils Data Task, 
International Geosphere-Biosphere Program 
(IGBP-DIS) (1998)  
Same web link and access date as above 

Soil Carbon Soil organic carbon density in kg per square meter, 0 to 1 
meter depth. 

Same source, web link and access date as above 

Slope Eight categories of median terrain slopes: 0-0.5%, 0.5-
2%, 2-5%, 5-8%, 8-16%, 16-30%, 30-45% and > 45%. 
We use the median slopes of the IIASA/FAO slope 
categories as our slope variable values.   

IIASA/FAO (2012)  
 

-------------------------------------------------------------------------------------------------------------------------------------------------------- 
Built-up Land Combination of modeled built-up areas based on 

nighttime lights and observed built-up area based on 
IGBP land cover data. 

https://nelson.wisc.edu/sage/data-and-
models/atlas/maps.php?datasetid=18&includere
latedlinks=1&dataset=18, accessed Mar 04, 
2016 

Protected 
Areas 

Global raster data layer with a resolution of 5 arc-minutes. 
Each pixel is classified as protected area where 
agriculture should not be occurring, protected area where 
agriculture could be occurring, or non-protected area. 

http://www.fao.org/geonetwork/srv/en/main.ho
me, accessed Mar 04, 2015 

Total land area 
from Statoids 

Total land area in an administrative unit. 
 

http://www.statoids.com/, accessed Mar 05, 
2016 

Harvested land 
area 

Total areas of land harvested in maize, soybeans, and 
wheat at Administrative Unit Level 1. 

http://kids.fao.org/agromaps/, retrieved Feb 20, 
2015 

CIA World 
Factbook 

Provides information on the government, geography, etc. 
for 267 world entities. 

https://www.cia.gov/library/publications/the-
world-factbook/, retrieved Feb 23, 2015 

GADM 
database 

Spatial database on the location of the world’s 
administrative area. 

http://gadm.org/, retrieved Feb 23, 2015 

USDA NASS 
Quick Stats 

United States Department of Agriculture National 
Agricultural Statistics Service census and survey data. 

http://quickstats.nass.usda.gov/#528F56BC-
9FFB-3942-B141-CA0EBDC414C9, retrieved 
May 16, 2015 

USDA 
Cropland Data 
Layer 

USDA National Agricultural Statistics Service Cropland 
Data Layer.  

https://nassgeodata.gmu.edu/CropScape/, 
accessed Jan 19, 2016  
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