Our diverse team of physical and social scientists work closely with the ag community to create products that use historical and future climate information to guide today’s most relevant farm management decisions.

Decision Support Tools

The Useful to Usable (U2U) project is developing a suite of climate-based decision tools to boost profitability and resiliency of agricultural production across the U.S. Corn Belt.

Become a Decision Support Tool tester
Sign up now at go.wisc.edu/ouz9v1

AgClimate View

A convenient way to access customized historical climate and crop yield data for the U.S. Corn Belt. View and download graphs of monthly temperature and precipitation, plot corn and soybean yield trends, and compare climate and yields over the past 30 years. AgClimate View also provides insights on rainfall and temperature variability throughout the year and lets you compare current conditions to the historical average.

Climate Patterns Viewer

Discover how global climate patterns like the El Nino Southern Oscillation (ENSO) and Arctic Oscillation (AO) have historically affected local climate conditions across the U.S. Corn Belt. Climate Patterns Viewer provides simple maps and charts to determine when (by month) and where (by climate division) specific phases of ENSO or AO have influenced temperatures, precipitation and crop yields.

Corn GDD

Track real-time and historical corn growing degree day accumulations, assess spring and fall frost risk, and guide decisions related to planting, harvesting and seed selection. This innovative tool integrates corn development stages with weather and climate data for location-specific decision support, tailored specifically to agricultural production.

Corn Split N

This product can be used to determine the feasibility and profitability of using post-planting nitrogen application for corn production. The Corn Split N tool combines historical data on crop growth and field/week conditions with economic considerations to determine best/worst/most likely scenarios of successfully completing nitrogen applications within a user-specified time period.

Crop and Climate Model Dashboard

The dashboard will offer a simple, unique look at expected changes in key agronomic variables between current-day and 2040. This will allow the ag community to quantify risk due to potential changes in crop yields, days suitable for fieldwork, soil moisture, ET and more.

Our Team of Collaborators

Purdue University: Linda Slakier Prokopy* (lead), Larry Behih, Sarah Church, Otto Deering*, Song de Yun, Mike Dunn, Ben Gramig*, Elin Karlsson, Anil Kumar, Xing Liu, Dev Niyogi*, Chris Panza, Paul Preckel, Carol Song*, Shannia Sun, Molly van Dop, Melissa Widhalm, Lan Zhao

Iowa State University: Chad Hart*, Jean McGuire, Lois Wright Morton*, Eugene Takle*, Adam Wilke

Michigan State University: Gopal Alagarswamy, Jeff Andresen*

South Dakota State University: Dennis Today*

University of Illinois: Jim Anger*, Beth Hall*, Steve Hilberg, Allul Jain*, Yang Song

University of Michigan: Yun-Jia Lo, Maria Carmen Lemos*

University of Missouri: Pat Guinan*, Ray Massey*

University of Nebraska-Lincoln: Juliana Dai, Roger Elmone*, Tonya Haigh, Cody Kroutson*, Tapan Pathak, Martha Shulski*

University of Wisconsin: Kim Kies, Jenna Klink, Vikram Koundinya, Rebecca Power*

* denotes co-project investigator

Irrigation Investment

This tool will use present-day conditions and future climate projections to offer guidance on irrigation investment decisions. This tool can be used to determine the potential costs and pay-off periods of irrigation by region.

For more information about this project, please visit www.AgClimate4U.org

@AgClimate4U