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Abstract

This document’s main purpose is to provide a full description of the Envisage. Envisage is
a global recursive dynamic computable general equilibrium model developed at the World Bank.
Envisage has been developed to assess the interactions between economies and the global envi-
ronment as affected by human-based emissions of greenhouse gases. At its core, Envisage is a
relatively standard recursive dynamic multi-sector multi-region CGE model. It has been comple-
mented by an emissions and climate module that links directly economic activities to changes in
global mean temperature. And it incorporates a feedback loop that links changes in temperature
to impacts on economic variables such as agricultural yields or damages created by sea level rise.
One of the overall objectives of the development of Envisage has been to provide a greater focus
on the economics of climate change for a more detailed set of developing countries as well as greater
attention to the potential economic damages. The model remains a work in progress as there are
several key features of the economics of climate change that are planned to be incorporated.
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Chapter 1

Introduction

The purpose of this document is to provide a complete specification of the equations of the
World Bank’s Environmental Impact and Sustainability Applied General Equilibrium
(ENVISAGE) Model. The Envisage Model is designed to analyze a variety of issues related to
the economics of climate change:

Baseline emissions of CO2 and other greenhouse gases

Impacts of climate change on the economy

Adaptation by economic agents to climate change

Greenhouse gas mitigation policies—taxes, caps and trade

The role of land use in future emissions and mitigation

The distributional consequences of climate change impacts, adaptation and mitigation—at
both the national and household level.

Envisage is intended to be flexible in terms of its dimensions. The core database—that includes
energy volumes and CO2 emissions—is the GTAP database, currently version 9.0 with a 2011 base
year. The latter divides the world into 140 countries and regions, of which 120 are countries and
the other region-based aggregations.1 The database divides global production into 57 sectors—with
extensive details for agriculture and food and energy (coal mining, crude oil production, natural gas
production, refined oil, electricity, and distributed natural gas). Appendix J provides more detail.
Due to numerical and algorithmic constraints, a typical model is limited to some 20-30 sectors and
20-30 regions.

This document describes the current version of Envisage, which is still in a developmental
stage. This current version includes the following:

Capital vintage production technology that permits analysis of the flexibility of economies

Partially endogenous technical change

A detailed specification of energy demand in each economy

Incorporation of a limited set of new energy technologies

1 The countries defined in GTAP cover well over 90 percent of global GDP and population.
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A resource depletion module for coal, oil and natural gas

The ability to introduce future alternative energy (or backstop) technologies

CO2 emissions that are fuel and demand specific

Incorporation of the main Kyoto greenhouse gases (methane, nitrous oxide and the fluoridated
gases)

A flexible system for incorporating any combination of carbon taxes, emission caps and trad-
able permits

A simplified climate module that links greenhouse gas emissions to atmospheric concentrations
combined with a carbon cycle that leads to radiative forcing and temperature changes.

The current work program includes the following tasks:

Addition of marginal abatement cost curves for the non-CO2 gases

Adding a more detailed land-use module

2



Chapter 2

ENVISAGE Model in a nutshell

The Envisage Model is a descendent of a family of models that originated at the OECD in the late
1980s and early 1990s, WALRAS, RUNS and GREEN (see OECD (1989/1990), Burniaux (1987),
Burniaux and van der Mensbrugghe (1994), Burniaux, Nicoletti, and Oliveira-Martins (1992), and
van der Mensbrugghe (1994)).1 Envisage was initially developed at the World Bank in 2007 and
was a re-coded version of the World Bank’s Linkage model (van der Mensbrugghe (2011)), which
had a trade focus. It is designed specifically to analyze climate change issues and thus incorporates
a more developed energy sector, a climate module (that makes integrated assessment an option),
and climate change impact feedbacks. Envisage is coded using the GAMS/MCP package.

Envisage is a recursive dynamic model with flexible step sizes. Each period is solved as a com-
parative static equilibrium with myopic expectations. Production is modelled using a set of nested
production functions. There are three production archetype structures—crops that is intended to
capture extensification vs. intensification, livestock that is designed to capture land versus feed sub-
stitutability, and all other sectors that rely on the traditional capital versus labor substitutability.
In all sectors energy is isolated as a special input that is a complement to capital in the short-term
and a substitute for capital in the long-term. A vintage structure is implemented in production that
captures putty-semi putty technology with less substitution assumed on installed capital, but more
substitution using new capital. This version of Envisage has a single land type that is allowed
to expand using a supply function with a region-specific asymptote. Land allocation across sectors
relies on a nested CET transformation structure using the LEITAP/MAGNET specification and
elasticities.

There are various utility functions embedded in Envisage to model household demand (CDE,
LES/ELES, AIDADS). For the AgMIP exercise, the LES utility function has been used—with
dynamically re-calibrated parameters (in the baseline) to target FAO’s food consumption trends
from its most recent report (Alexandratos and Bruinsma (2012)). The Armington specification is
used to model trade. In the standard closure, the net government fiscal position is fixed with lump
sum taxes endogenous, investment is savings driven, and the trade balance is fixed with endogenous
real exchange rates.

Dynamics is captured through three channels:

1. Population and labor force growth are exogenous

2. Capital dynamics relies on the standard motion equation that equates the current capital stock
to the sum of the previous period’s depreciated stock of capital and volume of investment

1 The first two of which were actually initially developed at Stanford University and the Université Libre de
Bruxelles, respectively.
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3. There is an economy-wide (labor) productivity factor that is calibrated in the reference run
to meet the overall target for GDP growth, though the model allows for intersectoral dif-
ferences in productivity. For the AgMIP exercise—agriculture and services have the same
labor productivity—it is higher in manufacturing. Exogenous productivity factors are ap-
plied to yields in agriculture, energy use in all sectors and final demand, and international
trade and transport margins. The food related input-output coefficients linked to household
consumption are also adjusted over time to target FAO’s food consumption trends-coupled
with changes to the LES parameters described above. The latest version also incorporates
endogenous productivity growth linked to investments in R&D and knowledge accumulation.
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Chapter 3

Model specification

3.1 Model dimensions

The coding of the model is relatively independent of the dimensionality of the underlying GTAP
database and other functional dimensions of the data. Table 3.1 provides a listing of the main sets
and subsets of the model. One of the key dimensions is aa, which encapsulates all of the Arm-
ington agents, including a, which is the subset of production activities. Sectors and commodities
have three classifications: a, i, and k, respectively (production) activities, marketed commodities
and consumed commodities. In a traditional model the three sets are identical. In the Envisage
model, with its multi-input multi-output production structure, output from activities (a) is com-
bined with imports to supply (or ’produce’) commodities (i). This allows, for example, to have
multiple activities produce a single commodity (for example electricity), and to have single activi-
ties produce multiple commodities (e.g. sugar producing sugar, ethanol, rum and even power). In
addition, Envisage allows for commodities in final demand (indexed by k) to differ from marketed
commodities (i). A consumer-based ’make’ or transition matrix maps consumed commodities to
supplied commodities. This allows for more realistic demand behavior in the context of an energy
model. For example, household demand for transportation services can be a combination of demand
for fuel and automobiles. If the price of fuel goes up, the combined demand for fuel/autos would
decline. It also allows for specific treatment of the demand for fuel and intra-fuel substitutability.

The next sections of the document describe the different block or modules of the model using
the rather traditional circular flow scheme of economics, i.e. starting with production and factor
incomes, income distribution, demand, trade, and macro closure. At the end, there is a discussion
on the model dynamics.

3.2 Production block

The Envisage production structure relies on a set of nested constant-elasticity-of-substitution
(CES) structures.1 The current version of Envisage includes three production prototypes that are
used to specify respectively production in crops, livestock and all other). Figures 3.1 through 3.6
describe the various nested structures. Three of the nests are generic to all three production
structures—figures 3.1, 3.5 and 3.6 referring respectively to the top nest (XP), the capital, skilled
labor and energy bundle (KSLE ) and the energy bundle (XNRG). The intermediate nests are spe-
cific to each of the three prototype production structures. Figure 3.3 illustrates the crop production

1 Some of the key analytical properties of the CES, and its related constant-elasticity-of-transformation (CET)
function, are fully described in Appendix A.
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Table 3.1: Sets used in model definition

Set Description

aa Armington agents

a Activities (a subset of aa)

i Produced (or supplied) goods

Manu Set of manufacturing sectors (subset of i, used in definition of numéraire)

fp Factors of production

l Labor categories (subset of fp)

Captl Capital account (subset of fp)

Landr Land account (subset of fp)

Natrs Natural resource account (subset of fp)

k Consumed commodities

nrg(k) The energy bundle in consumed commodities

in Institutions (subset of a)

h Households (subset of in)

Gov Government account (subset of in)

Inv Investment account (subset of in)

gy Government revenue accounts

ptax Production tax account (subset of gy)

atax Sales tax account on Armington goods (subset of gy)

mtax Import tariff account (subset of gy)

etax Export tax account (subset of gy)

vtax Tax on factors of production account (subset of gy)

ctax Carbon tax (subset of gy)

r Regions

r ′, d, s Alias with r, d used for destination region and s for source region

HIC Set of high-income regions (subset of r, used in definition of numéraire)

RSAV Residual region (subset of r, must be of single dimension)

intermediate nest, Figure 3.4 illustrates the livestock production intermediate nest and Figure 3.2
illustrates the standard production intermediate nest.

The key factor in crops production is intensification vs. extensification and thus the production
structure captures substitution between land and other inputs. Livestock is characterized by land
and feed substitution. Intermediate inputs for each activity are divided into three bundles—energy
(XNRG) that is a near complement with capital in the short-run and a substitute in the long-run,
sector specific inputs (ND2 ) that are substitutes with factors (such as agricultural chemicals in
crops and feed in livestock) and all other intermediate inputs that are typically modeled in fixed
proportion to output (ND1 ). Like the Linkage model, production, in the dynamic version of the
model is based on a vintage structure of capital, indexed by v. In the standard version, there
are two vintages—Old and New, where New is capital equipment that is newly installed at the
beginning of the period and Old capital is capital greater than a year old. The vintage structure
impacts model results through two channels. First, it is typically assumed that Old capital has
lower substitution elasticities than New capital. Thus countries with higher savings rates will have
a higher share of New capital and thus greater overall flexibility. The second channel is through the

6



allocation of capital across sectors. New capital is assumed to be perfectly mobile across sectors.
Old capital is sluggish and released using an upward sloping supply curve. In sectors where demand
is declining, the return to capital will be less than the economy-wide average. This is explained in
greater detail in the market equilibrium section.

Most of the equations in the production structure are indexed by v, i.e. the capital vintage.
The exceptions are those where it is assumed that the further decomposition of a bundle are no
longer vintage specific—such as the demand for non-energy intermediate inputs. Each production
activity is indexed by a, and is different from the index of produced commodities, i (allowing
for the combination of outputs from different activities into a single produced good, for example
electricity).

Output (XP)

Aggregate other
intermediate

demand (ND1 )

Other intermediate
demand (XA)

Intermediate demand
by region of origin

Value added plus
energy demand plus

sector-specific inputs (VA1 )

See figure 3.2 for standard intermediate nesting
See figure 3.3 for crop intermediate nesting

See figure 3.4 for livestock intermediate nesting

σp

σnd1

σm,σw

Figure 3.1: Top nest in production structure

Equations (P-1) and (P-2) are derived demands for two bundles, one designated as aggregate
value added, VA1 , though it also includes energy demand that is linked to capital and potentially
other sector-specific intermediate inputs, and aggregate intermediate demand, ND1 , a bundle that
excludes energy and other sector-specific inputs (that will be part of the ND2 bundle). Both are
shares of output by vintage, XPv , with the shares being price sensitive with respect to the ratio
of the vintage-specific unit cost, PXv , and the component prices, respectively PVA1 and PND1 .
The equations allow for technological change embodied in the λ parameters that are allowed to
be node-specific. For uniform technological change, the two parameters can be subject to the
same percentage change. Both productivity factors are impacted by the same damage adjustment,
δcd , which is region and sector specific and depends on climate change.2 Equation (P-3) defines
the vintage-specific unit cost, PXv . Almost all CES price equations are based on the dual cost
expression instead of the aggregate cost or revenue formulation. The unit cost function includes
the effects of productivity improvement and damages. To the extent climate leads to damages, δcd

drops below its initial level of 1, raising unit cost, all else equal. Equation (P-4) determines the
aggregate unit cost, PX , the weighted average of the vintage-specific unit costs with the weights
given by the vintage-specific output levels. The model allows for a markup, π, to unit cost that is
normally exogenous and initialized at 0. The revenue generated by the markup, Π, is defined in
equation (P-5). Equation (P-6) determines the final market price for output, PP , that is equal to
the unit cost augmented by the output tax (or subsidy), τp. The equivalence of the tax-adjusted

2 Discussed further below.
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unit cost to the output price is an implication of assuming constant-returns-to-scale technology and
perfect competition (and/or the presence of a fixed markup). The production price can also be
adjusted by a volume only tax (or an excise tax), represented by τx.

VA1r ,a,v = αva1
r,a,v

(

δcdr,aλ
v
r,a,v

)σp
r,a,v−1

(

PXvr ,a,v

PVA1r ,a,v

)σp
r,a,v

XPvr ,a,v (P-1)

ND1r ,a,v =
∑

v

αnd1
r,a,v

(

δcdr,aλ
n
r,a,v

)σp
r,a,v−1

(

PXvr ,a,v

PND1r ,a

)σp
r,a,v

XPvr ,a,v (P-2)

PXvr ,a,v =
1

δcdr,a

[

αva
r,a,v

(

PVA1r ,a,v

λvr,a,v

)1−σp
r,a,v

+ αnd
r,a,v

(

PND1r ,a

λnr,a,v

)1−σp
r,a,v
]1/(1−σp

r,a,v)

(P-3)

PXr ,a = (1 + πr,a)

∑

v
PXvr ,a,vXPvr ,a,v

XPr ,a
(P-4)

Πr,a = πr,a
∑

v

PXvr ,a,vXPvr ,a,v (P-5)

PPr ,a =
(

1 + τpr,a
)

PXr ,a + τxr,a (P-6)

The subsequent nests are specific to each of the three production prototypes, i.e. the VA1

bundle is split into a variety of intermediate bundles—but using a different nesting for each one
of the prototypes. The intermediate bundles include a natural resource bundle (NRB), two labor
bundles (LAB1 and LAB2 ), an energy bundle (XNRG) and a capital/energy/labor bundle (KP2 ).
The combination of these intermediate bundles are different for the different prototypes and include
other intermediate bundlesVA2 and KP1 where the same variable name is used for each of the three
prototypes but represent different combinations of composite bundles. The following shorthand
formulas, in Table 3.2, show the different combinations.

Table 3.2: Production nests for different archetypes

Crops Livestock All other

VA1=CES(NRB , VA2 ) VA1=CES(KP1 , VA2 ) VA1=CES(NRB , VA2)

VA2=CES(KP1 , KP2 ) VA2=CES(LAB1 , KP2 ) VA2=CES(KP1 , LAB1 )

KP1=CES(LAB1 , ND2 ) KP1=(NRB , ND2 ) KP1=CES(KP2 , ND2 )

The following sub-sections spell-out the full set of equations for each of the production ar-
chetypes—though some of the equations are repeated verbatim when they represent the same
combination of CES bundles.

3.2.1 Standard production nesting

The first set of equations (P-7) through (P-15) reflect the implementation of the intermediate
bundles for the standard production function. The standard production function essentially reflects
capital/labor substitution. For most sectors, the NRB bundle will not be active, with the exception
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of the energy sectors where the NRB will contain the relevant fossil fuel resource base. The ND2

bundle will also most likely be empty. The purpose of the LAB1 and LAB2 bundles is to allow the
differentiation of the use of diffent labor types in production. LAB1 could be thought of including
only unskilled labor types, whereas LAB2 would include skilled labor types. The latter can then
be combined with capital with potentially low elasticities as there is evidence that capital and
skilled labor are near complements. The first level nest, therefore, decomposes the top level value
added bundle, VA1 , into two bundles—a natural resource bundle on the one hand (NRB) and a
subsidiary value added bundle VA2 . Equations (P-7) and (P-8) represent respectively demand for
VA2 and NRB where σv1 is the CES substitution elasticity. Equation (P-9) represents the price
formulation for the VA1 bundle, PVA1 .

Value added plus
energy demand plus

sector-specific inputs (VA1 )

Demand for land
(NRB)

Demand for KLE

& other inputs (VA2 )

Demand for KSLE

& other inputs (KP1 )

Demand for KSLE

(KP2 )

See figure 3.5 for KSLE nest

Demand for
other inputs (ND2 )

Inputs of agric.
chemicals (XA)

Intermediate demand
by region of origin

Demand for unskilled
labor bundle (LAB1 )

Demand for unskilled labor

σv1

σv2

σk1 σul

σnd2

σm,σw

Figure 3.2: Intermediate nest for standard production structure

VA2r ,a,v = αva2
r,a,v

(

PVA1r ,a,v

PVA2r ,a,v

)σv1
r,a,v

VA1r ,a,v (P-7)

NRBr ,a,v = αnrb
r,a,v

(

PVA1r ,a,v

PNRBr ,a,v

)σv1
r,a,v

VA1r ,a,v (P-8)

PVA1r ,a,v =
[

αva2
r,a,v (PVA2r ,a,v )

1−σv1
r,a,v + αnrb

r,a,v (PNRBr ,a,v )
1−σv1

r,a,v

]1/(1−σv1
r,a,v)

(P-9)

The next CES nest decomposes the VA2 bundle into the (unskilled) labor bundle and the capital
bundle (with energy and optionally skilled labor), designated KP1 . Equations (P-10) and (P-11)
represent demand for the KP1 and LAB1 bundle respectively where σv2 is the relevant substitution
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elasticity. Equation (P-12) represents the price of the VA2 bundle, PVA2 .

KP1r ,a,v = αkp1
r,a,v

(

PVA2r ,a,v

PKP1r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-10)

LAB1r ,a,v = αlab1
r,a,v

(

PVA2r ,a,v

PLAB1r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-11)

PVA2r ,a,v =
[

αkp1
r,a,v (PKP1r ,a,v )

1−σv2
r,a,v + αlab1

r,a,v (PLAB1r ,a,v )
1−σv2

r,a,v

]1/(1−σv2
r,a,v)

(P-12)

The KP1 bundle is composed of the sector-specific intermediate input bundle, ND2 , and the
augmented capital bundle, KP2 . Equations (P-13) and (P-14) determine respectively demand for
the KP2 and ND2 bundles where the substitution elasticity is given by σk1. Equation (P-15)
determines the price of the KP1 bundle, PKP1 .

KP2r ,a,v = αkp2
r,a,v

(

PKP1r ,a,v

PKP2r ,a,v

)σk1
r,a,v

KP1r ,a,v (P-13)

ND2r ,a,v = αnd2
r,a,v

(

PKP1r ,a,v

PND2r ,a,v

)σk1
r,a,v

KP1r ,a,v (P-14)

PKP1r ,a,v =
[

αkp2
r,a,v (PKP2r ,a,v )

1−σk1
r,a,v + αnd2

r,a,v (PND2r ,a,v )
1−σk1

r,a,v

]1/(1−σk1
r,a,v)

(P-15)

3.2.2 Crop production nesting

This sections describes the decomposition of the VA1 bundle for the crops production strucuture.
Equations (P-16) through (P-18) are identical to the standard production structure, i.e. VA1 is
decomposed into an VA2 bundle and the NRB bundle.

VA2r ,a,v = αva2
r,a,v

(

PVA1r ,a,v

PVA2r ,a,v

)σv1
r,a,v

VA1r ,a,v (P-16)

NRBr ,a,v = αnrb
r,a,v

(

PVA1r ,a,v

PNRBr ,a,v

)σv1
r,a,v

VA1r ,a,v (P-17)

PVA1r ,a,v =
[

αva2
r,a,v (PVA2r ,a,v )

1−σv1
r,a,v + αnrb

r,a,v (PNRBr ,a,v )
1−σv1

r,a,v

]1/(1−σv1
r,a,v)

(P-18)

The VA2 bundle is decomposed into two bundles KP1 and KP2 . The latter is the same
across all production structures and is capital augmented by energy and skilled labor. The KP1

bundle in the case of crops is the combination of LAB1 and ND2 , where the latter is assumed
to be agricultural chemicals (fertilizers, pesticides, herbicides, etc.). Equations (P-19) and (P-20)
represent respectively demand for the KP1 and KP2 bundles, where σv2 is the CES substitution
elasticity. Equation (P-21) represents the price of the VA2 bundle, PVA2 .

KP1r ,a,v = αkp1
r,a,v

(

PVA2r ,a,v

PKP1r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-19)
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Value added plus
energy demand plus

sector-specific inputs (VA1 )

Demand for land
(NRB)

Demand for KLE

& agric. chem. (VA2 )

Demand for KSLE

(KP2 )

See figure 3.5 for KSLE nest

Demand for UL

& agric. chem. (KP1 )

Demand for unskilled
labor bundle (LAB1 )

Demand for unskilled labor

Demand for
agric. chem. (ND2 )

Inputs of agric.
chemicals (XA)

Intermediate demand
by region of origin

σv1

σv2

σk1

σul σnd2

σm,σw

Figure 3.3: Intermediate nest for crop production structure

KP2r ,a,v = αkp2
r,a,v

(

PVA2r ,a,v

PKP2r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-20)

PVA2r ,a,v =
[

αkp1
r,a,v (PKP1r ,a,v )

1−σv2
r,a,v + αkp2

r,a,v (PKP2r ,a,v )
1−σv2

r,a,v

]1/(1−σv2
r,a,v)

(P-21)

The third nest in the crop production structure decomposes KP1 into LAB1 and ND2—
equations (P-22) and (P-23)—with a CES elasticity of σk1 . Equation (P-24) determines the price
of the KP1 bundle, PKP1 .

LAB1r ,a,v = αlab1
r,a,v

(

PKP1r ,a,v

PLAB1r ,a,v

)σk1
r,a,v

KP1r ,a,v (P-22)

ND2r ,a,v = αnd2
r,a,v

(

PKP1r ,a,v

PND2r ,a,v

)σk1
r,a,v

KP1r ,a,v (P-23)

PKP1r ,a,v =
[

αlab1
r,a,v (PLAB1r ,a,v )

1−σk1
r,a,v + αnd2

r,a,v (PND2r ,a,v)
1−σk1

r,a,v

]1/(1−σk1
r,a,v)

(P-24)

3.2.3 Livestock production nesting

The key objective in the livestock production nesting is to capture the substitution between land
and feed and within feed, the substitution across the different feed components. The VA1 bundle
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is first decomposed into a VA2 and a KP1 bundle—that both have different components com-
pared with crops and the standard production structure. Equations (P-25) and (P-26) determine
respectively the demands for the VA2 and KP1 bundles. The price of the VA1 bundle is given by
equation (P-27).

VA2r ,a,v = αva2
r,a,v

(

PVA1r ,a,v

PVA2r ,a,v

)σv1
r,a,v

VA1r ,a,v (P-25)

KP1r ,a,v = αkp1
r,a,v

(

PVA1r ,a,v

PKP1r ,a,v

)σv1
r,a,v

VA1r ,a,v (P-26)

PVA1r ,a,v =
[

αva2
r,a,v (PVA2r ,a,v )

1−σv1
r,a,v + αkp1

r,a,v (PKP1r ,a,v )
1−σv1

r,a,v

]1/(1−σv1
r,a,v)

(P-27)

The next nest decomposes the VA2 bundle into LAB1 and KP2 , equations (P-28) and (P-29)
respectively. The price of the VA2 bundle, PVA2 is given by equation (P-30).

LAB1r ,a,v = αlab1
r,a,v

(

PVA2r ,a,v

PLAB1r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-28)

KP2r ,a,v = αkp2
r,a,v

(

PVA2r ,a,v

PKP2r ,a,v

)σv2
r,a,v

VA2r ,a,v (P-29)

PVA2r ,a,v =
[

αlab1
r,a,v (PLAB1r ,a,v )

1−σv2
r,a,v + αkp2

r,a,v (PKP2r ,a,v )
1−σv2

r,a,v

]1/(1−σv2
r,a,v)

(P-30)

The key nest decomposes KP1 into land on the one hand (the NRB bundle) and feed on the
other hand (the ND2 bundle). Equations (P-31) and (P-32) determine respectively the demand
for the NRB and ND2 bundles. The land/feed substitution elasticity is given by σk1 . The price of
the KP1 bundle, PKP1 , is given by equation (P-33).

NRBr ,a,v = αnrb
r,a,v

(

PKP1r ,a,v

PNRBr ,a,v

)σk1
r,a,v

KP1r ,a,v (P-31)

ND2r ,a,v = αnd2
r,a,v

(

PKP1r ,a,v

PND2r ,a,v

)σk1
r,a,v

KP1r ,a,v (P-32)

PKP1r ,a,v =
[

αnrb
r,a,v (PNRBr ,a,v )

1−σk1
r,a,v + αnd2

r,a,v (PND2r ,a,v )
1−σk1

r,a,v

]1/(1−σk1
r,a,v)

(P-33)

3.2.4 Decomposition of lower nests

At this stage, the decomposition of the remaining bundles is identical across all sectors. The
remaining bundles include two intermediate demand bundles (ND1 and ND2 ), two labor bundles
(LAB1 and LAB2 ), natural resources (NRB) and the KP2 bundle (that includes LAB2 and
energy).

The next nest is a decomposition of the capital/energy bundle, KP2 , into demand for a capital
plus potentially other factors of production (e.g. skilled labor), KP3 , and an energy bundle, XNRG .
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Value added plus
energy demand plus

sector-specific inputs (VA1 )

Demand for KLE

(VA2 )

Demand for KSLE

(KP2 )

See figure 3.5 for KSLE nest

Demand for unskilled
labor bundle (LAB1 )

Demand for unskilled labor

Demand for land
& feed (KP1 )

Demand for land
(NRB)

Demand for feed
bundle (ND2 )

Feed
inputs (XA)

Intermediate demand
by region of origin

σv1

σv2 σk1

σul σnd2

σm,σw

Figure 3.4: Intermediate nest for livestock production structure

Equation (P-34) defines the demand for the capital and skilled labor bundle, KP3 . The substitution
elasticity is given by σk2 . Equation (P-35) determines the demand for the energy bundle, XNRG .
The latter is indexed by eb, a special set that indexes all energy bundles. There is a set mapping
that has a one-to-one correspondence between the given activity a and a specific item in eb. The
reason for this is to simplify the code for disaggregating the energy bundles across agents in the
economy and is described further below. Equation (P-36) defines the price of the KP2 bundle,
PKP2 .

KP3r ,a,v = αkp3
r,a,v

(

PKP2r ,a,v

PKP3r ,a,v

)σk2
r,a,v

KP2r ,a,v (P-34)

XNRGr ,eb,v = αep
r,a,v

(

PKP2r ,a,v

PXNRGr ,eb,v

)σk2
r,a,v

KP2r ,a,v (P-35)

PKP2r ,a,v =
[

αkp3
r,a,v (PKP3r ,a,v )

1−σk2
r,a,v + αep

r,a,v (PXNRGr ,eb,v)
1−σk2

r,a,v

]1/(1−σk2
r,a,v)

(P-36)

The next nest is a decomposition of the capital plus other labor bundle, KP3 , into demand for
a capital plus potentially some types of labor (e.g. skilled labor). Equation (P-37) determines the
demand for the LAB2 bundle. Equation (P-38) defines the demand for capital by vintage, KV . The
substitution elasticity is given by σk3 . The capital productivity factor is λgf and potentially includes
climate related impacts. The productivity factor also includes an additional shift parameter, ϕw ,
that is sometimes used to scale base year prices/volumes in the case unitary indices are not used.
It is normally constant over time. Equation (P-39) defines the price of the KP3 bundle, PKP3 .

LAB2r ,a,v = αlab2
r,a,v

(

PKP3r ,a,v

PLAB2r ,a,v

)σk3
r,a,v

KP3r ,a,v (P-37)
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Demand for KSLE

(KP2 )

Demand for
energy bundle (XNRG)

See figure 3.6 for XNRG nest

Demand for capital and
skilled labor bundle (KP3 )

Demand for capital
by vintage (Kv)

Demand for skilled
labor bundle (LAB2 )

Demand for skilled labor

σk2

σk3

σsl

Figure 3.5: Nesting for KSLE bundle

KVr ,a,v = αf
r,Captl ,a,v

(

λgfr,Captl ,aϕ
w
r,Captl ,a,v

)σk3
r,a,v−1

(

PKP3r ,a,v

PKVr ,a,v

)σk3
r,a,v

KP3r ,a,v (P-38)

PKP3r ,a,v =



αlab2
r,a,vPLAB2

1−σk3
r,a,v

r,a,v + αf
r,Captl ,a,v

(

PKVr ,a,v

λgfr,Captl,aϕ
w
r,Captl ,a,v

)1−σk3
r,a,v





1

1−σk3
r,a,v

(P-39)

The next set of steps decompose the NRB bundle, the LAB1 and LAB2 bundles and the ND1

and ND2 bundles. The decomposition of the energy bundle is presented later.
The NRB bundle is decomposed into land and sector-specific factors—the two are indexed by

nr that is a subset of the set of factors. In the full GTAP database, there are no sectors with both
land and a natural resource. Land is only used in the crop and livestock sectors. Natural resources
are consumed in six sectors—forestry, fishing, coal, oil, natural gas and other mining. Thus this
nest typically will have one inactive node. It could be possible that in an aggregation of the GTAP
database a sector could have both land and natural resources. Equation (P-40) determines the
sectoral demand for the natural resources. It is summed across vintages. The price of the natural
resource bundle, PNRB , is given by equation (P-41).

XFr ,nr ,a =
∑

v

αf
r,nr ,a,v

(

λgfr,nr ,aϕ
w
r,nr ,a,v

)σnr
r,a,v−1

(

PNRBr ,a,v

PFr ,nr ,a

)σnr
r,a,v

NRBr ,a,v (P-40)

PNRBr ,a,v =





∑

nr

αf
r,nr ,a,v

(

PFr ,nr ,a

λgfr,nr ,aϕw
r,nr ,a,v

)1−σnr
r,a,v





1
1−σnr

r,a,v

(P-41)

An additional CES nest decomposes the aggregate land bundle, XFLandR, into land demand by
type. One of the satellite accounts of GTAP is the decomposition of land by agro-ecological zones
of which there are three broad types—tropical, temperate and boreal—within each of which there
are six sub-categories linked to the length of the growing period; thus there is a total of 18 agro-
ecological zones or AEZs. The land types are indexed by lt . Equations (P-42) and (P-43) define
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the demand for land by type within each land-using activity, Lnd , and the price of the aggregate
land bundle, PFLandR. The coefficient χlnd is used as a scaling factor for the land demand variable.

Lndr ,lt ,a = αlnd
r,lt ,a,v

(

PFr ,LandR,a

PLndr ,lt ,a

)σlt
r,a XFr ,LandR,a

χlnd
r,lt ,a

(P-42)

PFr ,LandR,aXFr ,LandR,a =
∑

lt

χlnd
r,lt ,aPLndr ,lt ,aLndr ,lt ,a (P-43)

The following node decomposes the LAB1 bundle that is intended to contain unskilled labor
types—but could contain all labor types. Equation (P-44) determines the demand for labor indexed
by l1 . It is summed across vintages. Equation (P-45) determines the price of the LAB1 bundle,
PLAB1 .

XFr ,l1 ,a =
∑

v

αf
r,l1 ,a,v

(

λgfr,l1 ,aϕ
w
r,l1 ,a,v

)σl1
r,a,v−1

(

PLAB1r ,a,v

PFr ,l1 ,a

)σl1
r,a,v

LAB1r ,a,v (P-44)

PLAB1r ,a,v =





∑

l1

αf
r,l1 ,a,v

(

PFr ,l1 ,a

λgfr,l1 ,aϕ
w
r,l1 ,a,v

)1−σl1
r,a,v





1

1−σl1
r,a,v

(P-45)

The following node, the decomposition of the LAB2 bundle, is virtually identical to above, but
where labor is in the LAB2 bundle is indexed by l2—intended to represent skilled labor types.
Equation (P-46) determines the demand for labor indexed by l2 . It is summed across vintages.
Equation (P-47) determines the price of the LAB2 bundle, PLAB2 .

XFr ,l2 ,a =
∑

v

αf
r,l2 ,a,v

(

λgfr,l2 ,aϕ
w
r,l2 ,a,v

)σl2
r,a,v−1

(

PLAB2r ,a,v

PFr ,l2 ,a

)σl2
r,a,v

LAB2r ,a,v (P-46)

PLAB2r ,a,v =





∑

l2

αf
r,l2 ,a,v

(

PFr ,l2 ,a

λgfr,l2 ,aϕ
w
r,l2 ,a,v

)1−σl2
r,a,v





1

1−σl2
r,a,v

(P-47)

The next two nodes in the production nest decompose the two ND bundles—ND2 is intended
to include all sector-specific intermediate inputs and ND1 contains the residual intermediate inputs
that not only excludes the inputs in ND2 , but also excludes the energy inputs. Equation (P-48)
determines the demand for the (Armington) intermediate inputs, XA, indexed by iox , where iox is
the subset of all intermediate inputs that are neither in ND2 nor in the energy bundle. The set iox
is specific to each activity. In general, we assume that the substitution elasticity for ND1 is zero.
The relevant price is the agent (or activity) specific Armington price, PAa . The latter will be a
composite price of domestic and imported goods, augmented by domestic taxes and, in mitigation
scenarios, with a tax linked to emissions (described below). The model allows for input-specific
efficiency improvements as encapsulated by the λnd parameter. Equation (P-49) provides the price
of the aggregate ND1 bundle.

XAr ,iox ,a = ior,iox ,a,Old

(

λndr,iox ,a

)σn1
r,a−1

(

PND1r ,a

PAa
r ,iox ,a

)σn1
r,a

ND1r ,a (P-48)
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PND1r ,a =





∑

iox

ior,iox ,a,Old

(

PAa
r ,iox ,a

λndr,iox ,a

)1−σn1
r,a





1

1−σn1
r,a

(P-49)

Equation (P-50) determines the (Armington) demand for inputs contained in the ND2 bundle
that are intended to be sector specific—for example the feed inputs in the livestock sector. The
elasticity in this case is expected to be positive. The index ion used in the equation includes only
the inputs that are not in ND1 and not in the energy bundle. The set ion is specific to each
activity. Equation (P-51) provides the price of the aggregate ND2 bundle.

XAr ,ion,a = ior,ion,a,Old

(

λndr,ion,a

)σn2
r,a−1

(

PND2r ,a

PAa
r ,ion,a

)σn2
r,a

ND2r ,a (P-50)

PND2r ,a =





∑

ion

ior,ion ,a,Old

(

PAa
r ,ion,a

λndr,ion,a

)1−σn2
r,a





1

1−σn2
r,a

(P-51)

This ends the description of the production structure, though there is a further decomposition
of XAn , i.e. the non-fuels intermediate Armington demand, and the energy bundle. The latter is
decomposed across fuels, and then finally decomposed as an Armington good.

3.3 Income block

The model has six indirect tax streams and two direct-tax streams:

1. The output tax, τp imposed on the aggregate price of output, PX , with an additional excise
tax, τx, in some circumstances.

2. A sales tax on sales of domestic Armington goods, τAp , which is agent specific and imposed
on the economy-wide price of domestic goods, PA.3

3. Bilateral import tariff, τm, imposed on the landed (or CIF) price of imports, WPM . The
model also allows for homogeneous goods, in which case the tariff represents a wedge between
the world price and the domestic price.

4. Bilateral export tax (or subsidy), τ e, imposed on the producer price of exports, PE . In the
case of a homogeneous commodity, the export tax represents the wedge between world prices
and domestic prices.

5. Taxes on the factors of production, τv, imposed on the market-clearing price of factors, NPF .

6. Taxes on emissions, τ e, imposed on the Armington consumption of goods.

7. Taxes on factor income, κf .

8. Direct household taxes, kappah.

3 The model allows for agent-specific Armington decompositions, though this increases the size of the model
considerably. This is described further in Appendix C on alternative trade specifications.
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Equations (Y-1) through (Y-6) correspond to the aggregate revenues generated by each of the
six indirect taxes. The notation for the variables not already described will be given below. One
important observation concerns the bilateral trade variables. These are indexed either as (r, d, i)
where r is the country of origin (the exporter), d the country of destination (the importer) and
i is the sector index, or as (s, r, i) where r is the importer, s the source country of imports (i.e.
the exporter) and i is the sector index. This explains the switch in the indices equations (Y-3)
and (Y-4) where WTF corresponds to the bilateral trade flow from region r to region d. Carbon tax
revenues will be a function of the parameter φ that allows for full or partial participation—including
full exclusion-by agent. Equation (Y-7) describes tax revenues from taxes on factor income. Thus,
total factor income is distributed directly to households net of income taxes that accrue to the
government. Equation (Y-8) defines the aggregate revenue from taxing household income.4 Fiscal
closure will be discussed below.

GREVr ,ptax =
∑

a

[

τpr,aPXr ,aXPr ,a + τxr,aXPr ,a

]

(Y-1)

GREVr ,atax =
∑
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∑
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r,i,aa

(

γcr,i,aaPATr ,i

)

XAr ,i ,aa (Y-2)
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∑
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∑
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∑
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τ er,iPWiXETr ,i (Y-4)

GREVr ,vtax =
∑
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∑
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τ vtaxr,fp,a + τ vsubr,fp,a

)

NPFr ,fp,aXFr ,fp,a (Y-5)

GREVr ,ctax =
∑
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r,emφr,em,i,aaχ

e
emρr,em,i,aaXAr ,i ,aa (Y-6)

GREVr ,ytax =
∑
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κfr ,fp

∑

a

NPF r,fp,aXF r,fp,a + κfr ,Captl

∑

a

Πr,a (Y-7)

GREVr ,htax =
∑

h

χk
rκ

h
r ,hYHr ,h (Y-8)

Equation (Y-9) defines aggregate fiscal revenues, where the set gy corresponds to the six indirect
tax streams (ptax , atax , ttax , etax , vtax and ctax ) and the two direct tax streams (ytax and htax ).
It is also assumed that income from a cap and trade system on emissions accrue to the government.
Equation (Y-10) summarizes net household income, YH . It is assumed that all factor income net
of income taxes (where NPF represents the market clearing factor price net of taxes) accrues to
households as well as profits generated by the markups. Household income is then adjusted for
the depreciation allowance, DeprY . Equation (Y-11) describes household disposable income, YD ,
where κh represents the base year household-specific direct tax rate. The direct tax rate is adjusted

4 The GTAP database does not distinguish between public and private savings. Thus net household income tax
reflects a balancing item that balances the macro accounts. If additional information is available on the split
of domestic savings between private and public, the macro SAM would need to be rebalanced. For example, if
the government deficit is equal to x percent of GDP, this amount would have to be added to private savings to
balance the investment/savings accounts, and subtracted from the initial level of net current transfers from the
government to households to balance both the household and government accounts.
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by an economy-wide adjustment factor, χk, which can be endogenous to achieve a given target,
for example the deficit of the public sector. Macro closure is discussed in more detail below.5

Disposable income is adjusted by changes in international tourism receipts, IIT , which will be
affected by climate change.

YGr =
∑

gy

GREV r,gy +
∑

em

QuotaY E
r,em (Y-9)

YHr =
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)

∑

a

NPF r,fp,aXF r,fp,a +
(

1− κfr ,Captl

)

∑
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Πr,a −DeprYr (Y-10)

YDr =
(

1− χk
rκ

h
r ,h

)

YHr + IITr ,h (Y-11)

3.4 Demand block

The demand block is divided into two sections. The first describes the allocation of household
disposable income between savings and expenditures on goods and services. The second describes
other final demand for goods and services.

Envisage incorporates several different specifications for the household utility function. The
default utility function is the constant-difference-in-elasticities (CDE) utility function popularized
by the GTAP model (see Hertel (1997)). The other three utility functions are variations of the
linear expenditure system (LES), also known as the Stone-Geary utility function. These include
the standard LES, the so-called extended linear expenditure system (ELES) that integrates the
decision to save with the allocation of income on goods and services, and the third variant, known
as an implicitly directly additive demand system (AIDADS), extends the standard LES to include
variable marginal budget shares that allow for more plausible Engel behavior. All four utility
functions are described in Appendix B.

Households first allocate disposable income between savings on the one hand and total expen-
diture on goods and services on the other hand.6 Equation (D-1) determines the household savings
rate (relative to disposable income), ss, as a function of per capita growth (gpc) and the youth and
elderly dependency ratios, respectively given by DRATPLT15 and DRAT 65UP .7 These variables are
typically exogenous in dynamic scenarios. The savings function also captures a persistence factor
defined by βs.8 Equation (D-2) determines the level of household savings. It should be noted that
if the ELES utility function is used to specify household demand for goods and services, equa-
tion (D-1) is dropped and equation (D-2) then defines the average propensity to save as the ELES

5 The GTAP dataset contains only a single representative household per country/region. The model implemen-
tation allows for multiple households and hence the need for an economy-wide tax shifter that is uniform across
households. This has different distributional consequences than an additive shifter or a more complex direct tax
schedule.

6 The demand block is significantly reformulated compared to the first version of the Envisage model. The latter
was largely inspired by the GTAP model. The current version is more similar to the Linkage specification.
It drops the top level utility function that allocated national income across savings, and public and private
expenditures. In the long-term scenarios this top-level structure was typically over-ruled with other specific
assumptions making the theoretical consistency of the top-level formulation less appealing.

7 The original theory and parameters for this formulation can be found in Loayza, Schmidt-Hebbel, and Servén
(2000) and Masson, Bayoumi, and Samiei (1998) and is summarized in van der Mensbrugghe (2011).

8 Setting all the β parameters to 0 would yield a constant savings rate. It is also possible to use this equation to
formulate a different closure—for example to target investment and allow the shift parameter, χs, to adjust to
achieve the given target.
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itself determines the level of savings. Equation (D-3) in essence determines aggregate expenditures
on household goods and services, YC . In the case of the ELES, combined with equation (D-4), it
defines the level of household savings, which is an outcome of the ELES. Equation (D-4) is only
used for the ELES version of the model.

ssr,h = χs
rα

s
r,h + βsrs

s
r,h,−1 + βgr g

pc
r β

y
rDRATPLT15 + βerDRATP65UP (D-1)

Sh
r,h = ssr,hYDr ,h (D-2)

YDr ,h = YCr ,h + Sh
r,h (D-3)

YCr ,h =
∑

k

PHXr ,k ,hXHr ,k ,h (D-4)

3.4.1 Expenditures

The next block of equations determines the top-level sectoral demands for goods and services for
households. In the standard model private expenditures are derived from the CDE specification
and are based on consumer-defined goods, XH , indexed by k, not Armington goods, XA, that
are indexed by i. The CDE and its properties are described fully in Appendix B. Four equations
are needed to implement the top-level CDE utility function. Equation (D-5) defines an auxiliary
variable θgh that simplifies the remaining equations.9 It is a term that includes the utility level,
consumer prices and total per capita expenditure. Equation (D-6) determines the household budget
shares and represents the normalized levels of the θgh variables. Equation (D-7) converts the budget
shares to household demand in levels. Utility is defined in per capita terms. However, the variable
XH represents aggregate expenditure since the variable YC is also total expenditure on goods and
services and not the per capita level. Finally, equation (D-8) defines implicitly the utility level.

θghr,k,h = αh
r,k,hb

h
r,k,h

(

U ehr,k,hPHXr ,k ,h

YCr ,h/Popr ,h

)bhr,k,h

(D-5)

shr,k,h =
θghr,k,h

∑

k

θghr,k,h

(D-6)

XHr ,k ,h =
shr,k,hYCr ,h

PHXr ,k ,h
(D-7)

∑

k

θghr,k,h

bhr,k,h
≡ 1 (D-8)

Equation (D-9) defines a consumer expenditure price index, PC . The latter can be used to
deflate total nominal expenditure in order to derive the aggregate volume of real expenditure, XC ,
as defined in equation (D-10).

PCr ,h =
∑

k

shr,k,hPHXr ,k ,h (D-9)

9 In the LES variants, the variable θgh reflects the climate-impacted subsistence minimum.
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XCr ,h = YCr ,h/PCr ,h (D-10)

The LES functional form has been used for special purposes. In some cases the subsistence
minima, though calibrated using base year data, are ’climate sensitive’—for example energy demand
for cooling and/or heating. This is described further in Appendix B. Another special purpose has
been to dynamically re-calibrate the LES parameters to target specific assumptions about budget
shares, income elastities, or in the case of food, specific trends on food consumption. These are
also described in Appendix B.

The next set of equations decomposes consumer demand defined as consumer goods into pro-
duced (or more accurately, Armington) goods. A transition matrix approach is used where each
consumed good is composed of one or more produced goods and combined using a CES aggrega-
tor.10 Each consumer good could also have its own energy bundle—with different demand shares
across energy.11 Equation (D-11) converts consumed goods HX into non-energy Armington goods,
XA. Equation (D-12) determines demand for the energy bundle, XNRG , for each of the k consumed
goods. There is a one-to-one correspondence between each index k and an index in the set eb (that
also includes demand for energy bundles in production and other final demand). Equation (D-13)
then determines the price of consumer good k.

XAr ,n,h =
∑

k

αc
r,n,k,h

(

PHXr ,k ,h

PAa
r ,n,h

)σc
r,k,h

HXr ,k ,h (D-11)

XAr ,eb,Old =
∑
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αnrgh
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PHXr ,k ,h
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)σc
r,k,h

HXr ,k ,h (D-12)

PHXr ,k ,h =

[

∑
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r,n,k,h
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)1−σc
r,k,h + αnrgh
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] 1
1−σc

r,k,h

(D-13)

The final block of demand equations decomposes aggregate public and investment demands.
A CES expenditure function is used that covers all non-energy Armington goods and an energy
bundle. Decomposition of the energy bundle is done at a later stage. Equation (D-14) represents
the sectoral (Armington) demand for public and investment non-energy expenditures XA, where
the index f represents the set spanning (gov and inv). Equation (D-15) determines the demand
for the energy bundle (where the index eb is mapped to the respective f index). The expenditure
price indices, PCf , are given by equation (D-16). In the standard model there are no stock-building

activities. In some scenarios it is helpful to give éxogenousd́emand shocks. This is most easily done
by assuming stock-building activities as defined in equation (D-17), where the level of stock-building
is linked to domestic production, XS .

XAr ,n,f = αf
r,n,f

(

PCr ,f

PAa
r ,n,f

)σf
r,f

XCr ,f (D-14)

10 Using the standard GTAP data, the transition matrix is diagonal—each consumed good corresponds to exactly
one produced good. Envisage still uses this approach save for the energy bundle that is combined into one
consumed commodity. Work is ongoing to develop a global database of transition matrices. The GREEN model
for example (see Burniaux, Nicoletti, and Oliveira-Martins (1992) and van der Mensbrugghe (1994)) had four
consumed goods and eight standard produced goods.

11 For example, a transportation bundle is likely to be dominated by liquid fuel demand, whereas demand for heat
is likely to be dominated by electricity and natural gas.
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XAr ,i ,stb = χstb
r,i XSr ,i (D-17)

3.5 The fuels block

Each agent in the economy has a specified demand for an aggregate energy bundle. The fuel
demanders are indexed by eb that spans all activities (a), each commodity consumed by households
(k) and other final demand (f).12 The equations above provide the bundle XNRG across all
eb agents. That bundle is decomposed across all energy sources using a nested CES structure
with agent-specific share parameters and substitution elasticities. At the top level, demand is
decomposed between electricity and non-electric energy (see figure 3.6). The non-electric bundle
is split into coal on the one hand, and gas and oil on the other. The oil and gas bundle is then
split into oil on the one hand and gas on the other. Using the standard GTAP classification, the
final electric bundle is composed of commodity ely alone. The coal bundle is composed of the
commodity coa alone. The gas bundle is composed of the commodities gas and gdt . And the oil
bundle is composed of the commodities oil and p c. In most cases, for these latter two bundles, one
component will dominate the other. For example, there may be some residual oil consumption in
households, but the bulk of the consumption will be p c. When the new alternative technologies are
introduced, they are inserted at the bottom most node for electricity, coal, oil and gas respectively.

The next block of equations is the top of the energy node nest. It decomposes the energy bun-
dle, XNRG, into an electric bundle, XELY , and a non-electric bundle, XNELY . Equations (F-1)
and (F-2) define respectively the demands for the electric and non-electric bundles with a substi-
tution elasticity given by σe. The equations are defined over all demanders of energy bundles, eb,
and are also vintage-specific in production. Equation (F-3) defines the CES price of the energy
bundle as a CES aggregation of the respective bundle prices, PELY and PNELY .

XELYr ,eb,v = αely
r,eb,v

(

PNRGr ,eb,v

PELYr ,eb,v

)σe
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] 1
1−σe

r,eb,v (F-3)

The following block decomposes the non-electric bundle into a coal bundle, XCOA, and an
oil and gas bundle, XOLG, given respectively by equations (F-4) and (F-5) with a substitution

12 Note that in the case of energy bundles from the production side, they are also indexed by vintage with potentially
different substitution elasticities across vintages. The non-production energy bundles are also indexed by vintage
(for simplicity), though only the Old vintage is active.
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Figure 3.6: Energy nest

elasticity of σnely . Equation (F-6) defines the price of the non-electric bundle, PNELY .
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The third node decomposes the oil and gas bundle into a gas bundle, XCOA, and an oil bundle,
XOIL. Equations (F-7) and (F-8) provide the demand equations for the respective bundles with a
substitution elasticity of σlog . Finally, equation (F-9) describes the price of the oil and gas bundle,
POLG , as a CES aggregation of the gas bundle, PGAS , and the oil bundle, POIL.
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At this point, the decomposition of fuels is down to four fundamental energy sources—electricity,
coal, gas and oil. In the initial state, with the GTAP data alone, each of the six energies in GTAP
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is mapped to these four bundles. Four energy sets are defined: ely , coa, oil and gas that correspond
to a mapping to one of the four types of energy. The GTAP ely sector is mapped to ely , the GTAP
coa sector is mapped to coa, the GTAP gas and gdt sectors are mapped to gas , and the GTAP oil

and p c sectors are mapped to oil . With the introduction of new technologies, the set mappings
will increase. Thus if there is one electric backstop technology, say renewables, and designated by
elybs , it will be mapped to the ely aggregate electric bundle.

Equations (F-10) through (F-17) determine the decomposition of the four basic energy bundles
to their respective Armington volumes. For electricity and coal, with the base data, these equations
are somewhat redundant since the bundles map to only one Armington commodity. Each demand
equation requires a summing over vintages (for only activities), and a summing across eb indices. In
most cases, the eb index maps to one, and only one, agent (aa). In the case of consumption, however,
the energy bundle can exist for each consumed commodity (k), and thus there can be as many energy
decompositions as there are consumer commodities. Each bundle also allows for energy efficiency
improvement, sometimes designated as the autonomous energy efficiency improvement (AEEI)
parameter, which is region, agent, fuel and vintage specific (in principle). The price equations need
a separate mapping from the eb to the aa index, though it is assumed that the consumer price for
a given fuel is uniform across the k commodities (i.e. natural gas used for heat has the same price
as natural gas used for transportation.).
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3.6 Trade Block

3.6.1 Top level Armington

The equations above have determined completely the so-called Armington demand for goods across
all agents, XA, that include activities (a), private or consumer demand (h), and other final demand
(f). The union of these three sets is the set aa. In the standard version of Envisage, all Armington
agents are assumed to have the same preference function for domestic and import goods.13 It is also
assumed that the Armington good, for each commodity i, is homogeneous across agents, and can
therefore be aggregated in volume terms. However, when using the energy volume data that comes
with the GTAP data set, the derived energy prices vary (modestly in most cases) across agents.14

To maintain the adding up assumption with the price differentials, a shift parameter is associated
with each agent. One could think of this intuitively as a quality index, so the gasoline consumed by
households has a different quality than that consumed in transportation, where quality differences
may simply reflect octane levels.

Equation (T-1) defines aggregate Armington demand, XAT . It is the sum across all agents
of their Armington demand—adjusted by the fixed shift (or quality) parameter, γc.15 The agent-
specific Armington price is composed of two components. The first, PA, is formed from the na-
tionally determined Armington price, PAT , defined below, adjusted by the quality index, γc, and
augmented by the user-specific sales tax, τAp—see equation (T-2). To this is added the emission
tax, τme , see equation (T-3). The emissions tax is given as a dollar amount per unit of emission,
where ρ determines the agent specific level of emissions per unit of demand by agent (aa), per input
(i) and per emission type (em). The emissions rate ρ is multiplied by a global emissions factor χe

that allows for the emissions rate to vary in the baseline scenario to achieve a given global emissions
trend.16 In other words ρ is calibrated to base year data and χe represents trend changes in the
emissions rate. The model allows for full or partial exemptions using the parameter ϕ—that can
also be agent, input and emission specific. For example it is possible to exempt given sectors or
households from paying the emissions tax for specific fuels, say gasoline. By default, the parameter
ϕ is set at 1, i.e. there are no exemptions. The emissions tax can be either set exogenously or be
model-derived by imposing an emissions cap at either the country or regional level.17 Notice that
the emission tax is not an ad valorem tax, but a Pigouvian per unit tax.

XATr ,i =
∑
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γcr,i,aaXAr,i,aa (T-1)

PAr,i,aa =
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e
emϕr,em,i,aaρr,em,i,aa (T-3)

13 The GTAP data decomposes Armington demand into its domestic and import component by agent. Appendix C
explains an alternative version of the Armington decomposition that allows for agent-specific behavior. Note
that this increases the size of the model considerably.

14 The energy data, derived from the databases of the International Energy Agency (IEA), are expressed in millions
of tons of oil equivalent (MTOE) across all energies, and thus prices are in base year dollars per unit of MTOE.

15 The γc parameter is initialized at 1 for all non-energy commodities. For energy commodities, it is initialized
such that there is uniformity of energy prices in efficiency units.

16 The baseline calibration of the emission rates only affects non-CO2greenhouse gases.
17 The model does not include equation (T-3) as it has been substituted throughout to minimize the creation of

additional variables.
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As mentioned above, the decomposition of the Armington aggregate, XAT , is done at the
national level. Figure 3.7 illustrates the decomposition of Armington demand into demand for
goods by region of origin. A nested structure is assumed. At the top level agents choose the
optimal mix of domestic goods and an aggregate import bundle. The second nest decomposes the
aggregate import bundle into demand for imports by region of origin. (The Armington equations
are all indexed by im. The model allows for homogeneous traded commodities and these are indexed
by ih.) Aggregate national demand for domestic goods, XDT d , is then a fraction of XAT , with the
fraction sensitive to the relative price of domestic goods, PD, to the Armington good, PAT—as
shown in equation (T-4). The key parameter, known as the Armington substitution elasticity, is
σm. The model allows for quality differences in the Armington composite goods using the γa and
γt parameters. These in effect allow one to calibrate the CES functions in terms of value shares
with the appropriate initialization of the respective γ. Equation (T-5) determines the demand for
aggregate imports, XMT , which are further decomposed by trading partner (see below). The price
of aggregate imports is tariff-inclusive. Finally, equation (T-6) defines the aggregate (or national)
price of the aggregate Armington good, PAT .

Armington
demand (XAT )

Demand for domestically
produced goods (XDTd)

Demand for aggregate
import bundle (XMT )

Demand for imports
by region of origin (WTFd)

σm

σw

Figure 3.7: Armington nest

XDT d
r,im = αd

r,im

(

γar,im
)σm

r,im−1
(

PAT r,im

PDr,im

)σm
r,im

XAT r,im (T-4)

XMT r,im = αm
r,im

(

γtr,im
)σm

r,im−1
(

PAT r,im

PMT r,im

)σm
r,im

XAT r,im (T-5)

PAT r,im =



αd
r,im

(

PDr,im

γar,im

)1−σm
r,im

+ αm
r,im

(

PMT r,im

γtr,im

)1−σm
r,im





1
1−σm

r,im

(T-6)

3.6.2 Bilateral trade prices

Each bilateral trade flow is associated with four different prices:

1. PE represents the factory or farm gate price

2. WPE represents the FOB price, an export tax or subsidy induces a wedge between the
producer price and the FOB price18

18 The Envisage model specification of export taxes is that they are an ad valorem tax on the producer price,
thus an export subsidy is negative. An alternative formulation would be to specify the tax as a wedge between
the world price and the domestic FOB price in which case the subsidy is measured as a positive wedge.
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3. WPM represents the CIF price, international trade and transport margins introduce a wedge
between the FOB and CIF price

4. PM represents the agent-price and includes the bilateral tariff

Equations (T-7) through (T-9) describe three of the prices associated with international trade,
respectively WPE , WPM and PM (the determination of PE is described below). The first regional
index, s, is the source or exporting region. The second regional index, d, is the destination or
importing region. The respective wedges are represented by τ e, the export tax/subsidy, τ tm , the
international transport margin, and τm the bilateral tariff. The price of a unit of international
transport is uniform, irrespective of the transport node and sector.

WPE s,d,im =
(

1 + τ es,d,im
)

PE s,d,im (T-7)

WPM s,d,im = WPE s,d,im + τ tms,d,imPWMG (T-8)

PM s,d,im =
(

1 + τms,d,im
)

WPM s,d,im (T-9)

3.6.3 Second level Armington nest

The second nest in the Armington structure allocates aggregate import demand (across all agents)
to specific regions of origin.19 The bilateral trade flow will reflect preferences, the region of origin-
specific export price and the bilateral tariff, τm. The price impacts are reflected in the tariff-
inclusive bilateral price PM . Equation (T-10) defines import demand, WTF d , by region r, sourced
in region s. Equation (T-11) defines the aggregate import price, PMT . It is an aggregation of the
tariff inclusive bilateral import price. All agents are assumed to face the same import price (net of
the sales tax), i.e. implicitly we are assuming that the composition of the import bundle by each
agent is identical.

WTF d
s,r,im = αw

s,r,im

(

γms,r,im
)σw

r,im−1
(

PMT r,im

PM s,r,im

)σw
r,im

XMT r,im (T-10)

PMT r,im =





∑

s

αw
s,r,im

(

PM s,r,im

γms,r,im

)1−σw
r,im





1
1−σw

r,im

(T-11)

3.6.4 Allocation of domestic production to domestic and export markets

Analogous to the two-nested Armington specification described above, the Envisage model allows
for imperfect transformation of output across markets of destination—domestic and for export.
A two-nested CET structure is implemented, see figure 3.8. At the top level, output is allocated
between the domestic market and aggregate exports. At the next level, aggregate exports are
allocated across various foreign markets. At either nest, infinite transformation is allowed in which
case the CET first order conditions are replaced by the law of one price. The supply of international
trade and transport services (XMG) is treated apart and is assumed to be priced at the average
producer price, PP .

19 Note that in either version of the top-level Armington decomposition—national or agent-specific—the decom-
position of imports by region of origin is specified at the national level.
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Figure 3.8: Armington nest

Equations (T-12) and (T-13) represent the derived supply for domestic, XDT s , and aggregate
export, XET , markets respectively. With finite transformation, these conditions are the stan-
dard CET first order conditions based on supply (less supply of international trade and transport
services). With perfect transformation, each is replaced with the law of one price whereby the
domestic, PD, and export, PET , producer price are set equal to the aggregate supply price, PS .
Equation (T-14) represents the market equilibrium for supply. With perfect transformation do-
mestic supply is equal to the sum of supply to the various markets—domestic, XDT , aggregate
exports, XET and international trade and transport services, XMG. With finite transformation,
the aggregation function is equal to the CET primal function. However, this can be replaced with
the CET dual price function as is the case in equation (T-14). All equations allow for a component
specific quality or efficiency factor, γd and γe.







XDT s
r,im = γxdr,im

(

γd
r,imPDr,im

PSr,im

)σx
r,im

XSr,im−XMGr,im

γd
r,im

if σxr,im 6= ∞

PDr,im = γdr,imPS r,im if σxr,im = ∞

(T-12)







XET r,im = γxer,im

(

γe
r,imPET r,im

PSr,im

)σx
r,im XSr,im−XMGr,im

γe
r,im

if σxr,im 6= ∞

PET r,im = γer,imPS r,im if σxr,im = ∞
(T-13)











PS r,im =

[

γxdr,im

(

PDr,im

γd
r,im

)1+σx
r,im

+ γxer,im

(

PET r,im

γe
r,im

)1+σx
r,im

]
1

1+σx
r,im

if σxr,im 6= ∞

XS r,im = γdr,imXDT s
r,im + γer,imXET s

r,im + XMGr,im if σxr,im = ∞

(T-14)

Equations (T-15) and (T-16) reflect the second level CET nest allocating aggregate exports,
XET , across various export markets as represented by WTF s . With perfect transformation, the
bilateral export producer price is equal to the aggregate export price, PET , and aggregate export
supply is simply the sum across all export markets. With finite transformation, the CET first-order
condition determines WTF s and the aggregate export price is the CET aggregation of the regional
export prices. Similar to the other trade equations, a quality or efficiency parameter is introduced
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that allows for prices to deviate from uniformity even with an infinite transformation elasticity.







WTF s
r,d,im = γxwr,d,im

(

γw
r,d,imPEr,d,im

PET r,im

)σz
r,im XET r,im

γw
r,d,im

if σzr,im 6= ∞

PE r,d,im = γwr,d,imPET r,im if σzr,im = ∞
(T-15)











PET r,im =

[

∑

d γ
xw
r,d,im

(

PEr,d,im

γw
r,d,im

)1+σz
r,im

]
1

1+σz
r,im

if σzr,im 6= ∞

XET r,im =
∑

d γ
w
r,d,imWTF s

r,d,im if σzr,im = ∞

(T-16)

3.6.5 Homogeneous traded goods

The model allows for homogeneous traded goods. In principle, none of the goods in GTAP can
be treated immediately as homogeneous goods since there exists bilateral trade for all goods. In
principle, some goods are nearly homogeneous since either imports or exports are so small that they
could be ignored in an intermediate step that moves from the Armington specification to one based
on net trade. It is also possible to introduce new commodities into the model as either Armington
or homogeneous goods.

Equation (T-17) defines net trade, NT , for homogeneous goods defined over index ih. It is
defined as a value and is the difference between domestic supply, XS , and domestic demand, XAT ,
evaluated at the world price, PW . Net trade is negative if demand exceeds supply. Equation (T-18)
is the market equilibrium condition for homogeneous goods. At equilibrium, the sum of net trade
across all countries must equal 0. Equation (T-19) determines the domestic price of homogeneous
goods—it is equal to the world price adjusted by the tariff (that is no longer region of origin
specific). Both supply and demand prices are equal as provided by equation (T-20).

NT r,ih = PW ih (XS r,ih −XAT r,ih) (T-17)

∑

r

NT r,ih = 0 (T-18)

PS r,ih =
(

1 + τmr,ih
)

PW ih (T-19)

PAT r,ih = PS r,ih (T-20)

The next three equations are not strictly necessary for the model, but provide identities that
can be useful. The first, equation (T-21), defines the volume of aggregate exports. It is specified
as a mixed complementarity formula, or using an orthogonality condition. For the relation to hold,
exports must be equal to net trade, or if net trade is negative, exports are set to zero, i.e. they must
never fall below zero. The second equation (T-22), almost identical, defines the aggregate volume
of imports. If exports are positive, XMT will be zero, else, imports are equal to the negative of net
trade and will be positive. The third is a definition of a world price for Armington goods, and is a
weighted global average of domestic supply prices, PS .

(PW ihXET r,ih − NT r,ih)XET r,ih = 0 ⊥ XET r,ih ≥ 0 (T-21)

NT r,ih = PW ih (XET r,ih −XMT r,ih) (T-22)
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PW im =
∑

r

ϕw
r,imPS r,im (T-23)

3.6.6 Domestic supply

The model allows for multi-output production activities (for example producing ethanol and DDGS
from ethanol production) and the aggregation of goods produced by multiple activities into a
single commodity (for example different streams of electrical production—coal, gas, hydro, nuclear,
renewables, etc.—each with its own cost structure, but combined by a distributor into a single
commodity).

Multi-output production

Activity a can therefore produce a suite of commodities indexed by i, hence output at this level is
indexed by both a and i, Xa,i.

20 This is implemented using a CET structure with the possibility
of infinite transformation. Equation (T-24) defines the supply of Xa,i emanating from activity a
(or XPa), where the law of one price holds in the case of a finite transformation. Equation (T-25)
represents the zero profit condition, or the revenue balance for the multi-output production function.

{

Xr,a,i = γpr,a,i

(

Pr,a,i

PPr,a

)ωs
r,a

XPr,a if ωs
r,a 6= ∞

Pr,a,i = PPr,a if ωs
r,a = ∞

(T-24)

PPr,aXPr,a =
∑

i∈{γp
r,a,i 6=0}

Pr,a,iXr,a,i (T-25)

Domestic supply of non-electric commodities

The aggregation of commodities produced by multiple activities uses a single nested CES function
for all commodities with the exception of electricity. The aggregate supply of the electric commodity
is described in the next section.

For the non-electric commodities, multiple streams of output can be combined into a single sup-
plied commodity, XS i , with a CES aggregator, or preference function. The specification allows for
homogeneous goods in which case the cost of each component must be equal, subject perhaps to an
efficiency or quality differential. Equation (T-26) determines the demand for produced commodity
X. In the case of a finite elasticity it is a CES formulation. With an infinite substitution elastic-
ity, the law-of-one price must hold, i.e. the producer price of each component must be equalized
in efficiency units. Equation (T-27) determines the equilibrium condition in the form of the cost
function equality.

{

Xr,a,i = αs
r,a,i

(

γsr,a
)σs

r,i−1
(

PSr,i

Pr,a,i

)σs
r,i

XS r,i if σsr,i 6= ∞

Pr,a,i = γsr,aPS r,i if σsr,i = ∞
(T-26)

PS r,iXS r,i =
∑

a∈{αs
r,a,i 6=0}

Pr,a,iXr,a,i (T-27)

20 In the GTAP database this will be represented by a diagonal matrix where each activity produces one and only
one good.
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Domestic supply of electricity

The bundling of electricity uses a nested CES structure instead of a single nest, see figure 3.9.
The top nest combines aggregate power supply with distribution and transmission services to form
aggregate domestic electricity supply. Aggregate power supply is composed of a user-determined
number of power bundles to which each power source is mapped. A nested approach is used. The
first level nest disaggregates the aggregate power bundle into one or more user-defined sub-power
bundles. The second level nest decomposes a subset of the power bundles into additional power
bundles. The other power bundles in the first nest will be decomposed directly into specific power
activities. The bottom-level power bundles are decomposed into power activities.

Electricity
supply (XS)

Demand for distribution
and transmission services (Xedt )

Demand for aggregate
power bundle (XSpow )

Demand for
power bundles (XBNDpow )

Demand for power
by activity (Xebs )

σel

σpow

σpb

Figure 3.9: CES nest for power bundle

Equation (T-28) determines the demand for electricity distribution and transmission services—
indexed by activities edt—used to produce one or more electric commodities—indexed by ely .21 It
is linked to the total supply of power, XSpow , in a CES bundle. The normal specification assumes a
Leontief technology, i.e. a substitution elasticity of zero. Equation (T-29) determines the demand
for the power bundle, it is a bundle of all electricity generation, and excludes the distribution and
transmission services. Equation (T-30) determines the supply price of aggregate electricity.

Xr,edt ,ely = αs
r,edt ,ely

(

PS r,ely

Pr,edt ,ely

)σel
r,ely

XS r,ely (T-28)

XS
pow
r,ely = αpow

r,ely

(

PS r,ely

P
pow
r,ely

)σel
r,ely

XS r,ely (T-29)

PS r,ely =

[

αs
r,edt ,ely (Pr,edt ,ely)

1−σel
r,ely + αpow

r,ely

(

P
pow
r,ely

)1−σel
r,ely

]1/(1−σel
r,ely )

(T-30)

The following stage decomposes aggregate demand for power into a user determined number
of power bundles. Many configurations are possible. The one most commonly used in Envisage
includes two power bundles at this stage—one called ’CNV’ that represents conventional power
technologies and is itself a power bundle composed of coal-fired, oil-fired, gas-fired, nuclear, and

21 Typically there is a single distribution and transmission activity and a single electricity commodity.
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hydro-power bundles. The second is a bundle of renewable technologies—wind, solar and other
renewables. The latter is a bottom-level power bundle, i.e. it is directly mapped to specific power
activities.22 Equation (T-31) determines the demand for the first level power bundles, these are the
power bundles indexed by pb1 . Notice that the aggregate price used in the expression is PN pow

and not Ppow . The latter is the aggregate, or average price of the power bundle. The former is
a price index that is defined in equation (T-32). In the standard CES, the two price concepts are
identical. The power decomposition uses the so-called adjusted CES, which preserves the additivity
of the CES components (see Annex A). The demand expressions in both versions of the CES are
similar. However, the expression for the aggregate price index differs and the price index is not
equal to the average price (as calculated using the zero profit condition). Thus, equation (T-33) is
added that evaluates the average price, Ppow .

XBND
pow
r,pb1 ,ely = αpowbnd

r,pb1 ,ely

(

PN
pow
r,ely

λpowbndr,pb1 ,elyPBND
pow
r,pb1 ,ely

)σpow1
r,ely

XS
pow
r,ely (T-31)

PN
pow
r,ely =





∑

pb1

αpowbnd
r,pb1 ,ely

(

λpowbndr,pb1 ,elyPBND
pow
r,pb1 ,ely

)−σpow1
r,ely





−1/σpow1
r,ely

(T-32)

P
pow
r,elyXS

pow
r,ely =

∑

pb1

PBND
pow
r,pb1 ,elyXBND

pow
r,pb1 ,ely (T-33)

The next set of equations deals with the intermediate power bundles that are composed of
other power bundles. These intermediate power bundles are indexed by pb1b, i.e. they are a subset
of pb1 and are also formed of other power bundles indexed by pb2 . Equation (T-34) determines
the demand for the second level power bundles, these are the power bundles indexed by pb2 .
Each power bundle pb2 is mapped to one, and only one, first level power bundle indexed by pb1b.
Equation (T-35) defines the adjusted CES price index for the power bundles indexed by pb1b. And,
equation (T-36) determines the relative aggregate price, PBNDpow .

XBND
pow
r,pb2 ,ely = αpowbnd

r,pb2 ,ely

(

PBNDN
pow
r,pb1b,ely

λpowbnd
r,pb2 ,elyPBND

pow
r,pb2 ,ely

)σpow2
r,pb1b,ely

XBND
pow
r,pb1b,ely

if pb2 ∈ {pb1b}

(T-34)

PBNDN
pow
r,pb1b,ely =





∑

pb2∈{pb1b}

αpowbnd
r,pb2 ,ely

(

λpowbndr,pb2 ,elyPBND
pow
r,pb2 ,ely

)−σpow2
r,pb1b,ely





−1/σpow2
r,pb1b,ely

(T-35)

PBND
pow
r,pb1b,elyXBND

pow
r,pb1b,ely =

∑

pb2∈{pb1b}

PBND
pow
r,pb2 ,elyXBND

pow
r,pb2 ,ely (T-36)

The subsequent nests decompose the various power bundles into their components, which is the
output of the various power activities. Each power activity is mapped to one, and only one, power
bundle. Equation (T-37) determines the demand for the power generated by activity ebs , where
activity ebs is mapped to power bundle pba. Equations (T-38) and (T-39) determine respectively

22 An earlier version of the power bundle included peak versus base load. This is still possible in the current
configuration as it is possible to define two power bundles, base and peak, and map the individual activities to
the two power bundles.
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the power bundle price index using the adjusted CES price expression and the average price of the
power bundle using the zero profit condition.

Xr,ebs,ely = αs
r,ebs,ely

(

PBNDN
pow
r,pba,ely

Pr,ebs,ely

)σpba
r,pba,ely

XBND
pow
r,pba,ely

if ebs ∈ pba

(T-37)

PBNDN
pow
r,pba,ely =





∑

ebs∈{pba}

αs
r,ebs,ely (Pr,ebs,ely)

−σpba
r,pba,ely





−1/σpba
r,pba,ely

(T-38)

PBND
pow
r,pba,elyXBND

pow
r,pba,ely =

∑

ebs∈{pba}

Pr,ebs,elyXr,ebs,ely (T-39)

The sample GAMS code provided in listing (3.1) shows an example of a power nesting. This
configuration of the GTAP power database uses an aggregation of 8 of the potential power sources
(aggregating away the distinction between base and peak load generation), and maintains the elec-
tricity distribution and transmission activity. In addition, 3 additional power sources are included—
coal- and gas-powered generation with carbon capture and storage (CCS) and an ’advanced nuclear’
option. These are introduced with very lower penetration shares initially and with a given cost
structure typically higher than their conventional counterparts. Thus there are a total of 11 power
generation activities and one transmission and distribution activity. The subset ebs refers to the
generation activities. The set pb defines all possible power bundles. Some may be composed of
other power bundles (i.e. they are intermediate power bundles) and the others will be composed
directly of power generation activities. The set pb1 defines the intermediate power bundles—of
which there are only two: conventional power and a renewable bundle. The former is composed of
other power bundles. The latter is composed of renewable power activities. Hence, there is only one
intermediate power bundle, indexed by pb1b, referring to the bundle ’CNV’. The set pb2 defines
the power bundles that are mapped to intermediate power bundles. And, the mapping mappow1

provides the mapping for the ’CNV’ bundle, i.e. the mapping for pb1b relative to the pb2 bundles.
The set pba refers to the bottom-level power bundles. All of these bundles are composed of one
or more power activities. The mapping mappow provides the mapping of the 11 power generation
activities to the bottom-level power bundles. In the configuration described in the listing, the coal
power bundle is composed of two power activities—conventional coal and coal with CCS, similarly
the gas power bundle is composed of conventional gas power and gas with CCS, and the nuclear
power bundle is composed of conventional nuclear and the so-called advanced nuclear power. The
renewable power bundle is made up of wind, solar and other renewable power. The other power
bundles contain only one activity each.

The purpose of this configuration is three-fold. First, it allows to change the ’preferences’ for
renewable power independently of the preference for the other technologies. Second, it allows to
change the preference for oil-powered electricity within the conventional bundle.23. Third it allows
for introducing and developing new technologies as close substitutes to existing technologies. To
conclude, the implementation of the power nesting provides the user with significant flexibility.

Listing 3.1: Example of a power nesting in GAMS

2 set elya(a) "Electicity activities" /

3 clp−a "Coal−base power"

23 We assume a phase-out of oil-powered electricity.
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4 olp−a "Oil−base power"

5 gsp−a "Gas−base power"

6 nuc−a "Nuclear power"

7 hyp−a "Hydro power"

8 wnd−a "Wind power"

9 sol−a "Solar power"

10 xel−a "Other power"

11 ccs−a "Coal based CCS"

12 gcs−a "Gas based CCS"

13 adv−a "Advanced nuclear"

14 edt−a "Electricity distribution and transmission"

15 / ;

17 set ebs(elya) "Base power sources" /

18 clp−a "Coal−base power"

19 olp−a "Oil−base power"

20 gsp−a "Gas−base power"

21 nuc−a "Nuclear power"

22 hyp−a "Hydro power"

23 wnd−a "Wind power"

24 sol−a "Solar power"

25 xel−a "Other power"

26 ccs−a "Coal based CCS"

27 gcs−a "Gas based CCS"

28 adv−a "Advanced nuclear"

29 / ;

31 set pb "Power bundles" /

32 cnv "Conventional power"

33 coa "Coal power"

34 oil "Oil power"

35 gas "Gas power"

36 nuc "Nuclear"

37 hyd "Hydro"

38 ren "Renewables"

39 / ;

41 set pb1(pb) "Top level power bundles" /

42 cnv "Conventional power"

43 ren "Renewables"

44 / ;

46 set pb1b(pb) "Top level power bundle composed of other power bundles" /

47 cnv "Conventional power"

48 / ;

50 set pba(pb) "Power bundles composed of activities" /

51 coa "Coal power"

52 oil "Oil power"

53 gas "Gas power"

54 nuc "Nuclear"

55 hyd "Hydro"

56 ren "Renewables"

57 / ;

59 set pb2(pb) "Second level power bundles" /

60 coa "Coal power"

61 oil "Oil power"

62 gas "Gas power"

63 nuc "Nuclear"

64 hyd "Hydro"

65 / ;

67 set mapPow1(pb1b, pb2) /

68 cnv.(coa, oil, gas, nuc, hyd)

69 / ;

71 set mapPow(pb, ebs) "Power bundle mapping" /
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72 coa .clp−a
73 coa .ccs−a
74 oil .olp−a
75 gas .gsp−a
76 gas .gcs−a
77 nuc .nuc−a
78 nuc .adv−a
79 hyd .hyp−a
80 ren .wnd−a
81 ren .xel−a
82 ren .sol−a
83 / ;

3.6.7 International trade and transport services

The global demand for international trade and transport services will be driven by the overall level
of trade. Its allocation across suppliers is specified as a CES function where demand (partially)
adjusts to low-cost suppliers. Within each region, production of these services is given by a CES
technology.

Equation (T-40) determines the global demand for international trade and transport services,
XWMG.24 Regional supply of these services, XTMG , is determined in equation (T-41), the CES
first order conditions. The global price, PWMG, is given in equation (T-42), the CES dual price
formula. The regional supply price, PTMG , is given in equation (T-43). And the sectoral and
regional supply of these services, XMG , is given in equation (T-44).

PWMG.XWMG =
∑

s

∑

d

∑

im

(WPM s,d,im −WPE s,d,im)WTF s
s,d,im (T-40)

XTMGr = αtmg
r

(

PWMG

PTMGr

)σt

XWMG (T-41)

PWMG =

[

∑

r

αtmg
r PTMG1−σt

r

]1/(1−σt)

(T-42)

PTMGr =

[

∑

i

αmg
r,i PP

1−σrt

r,i

]1/(1−σrt )

(T-43)

XMGr,i = αmg
r,i

(

PTMGr

PPr,i

)σrt

XTMGr (T-44)

3.7 Product market equilibrium

The model has only two ’basic’ commodities—domestically produced goods for the domestic market,
XDT , and bilateral exports, WTF . All other goods are composite goods. Equations (E-1) and (E-2)
determine the equilibrium price for these two sets of goods, respectively PD and PE . With perfect
transformation (at both levels), the true goods market equilibrium price is PS and equation (T-14)

24 Note that the current formulation assumes that homogeneous goods are transported at no cost internationally.
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is the market equilibrium condition. In the model implementation, the equilibrium conditions (E-1)
and (E-2) are substituted out.

XDT d
r,i = XDT s

r,i (E-1)

WTDd
s,d,i = WTDs

s,d,i (E-2)

3.8 Factor market equilibrium

The GTAP database has five factors of production—unskilled and skilled labor25, capital, land
and natural resources (or sector-specific factors: forestry, fishing, coal, oil, natural gas and other
mining). The next sections describe factor market equilibrium for these factors. The first describes
a resource with a national market—with no, partial or full mobility. In the standard version of
Envisage, this covers only the land markets. Labor markets are covered separately. The model
allows for labor market segmentation where the rural and urban markets clear separately and with
the existence of a Harris-Todaro type rural to urban migration function. Natural resources have a
supply curve under various assumptions. Finally, the capital market is handled apart—partially to
implement the vintage capital structure.

3.8.1 The market for land

A nested structure is used to allocate land, by type, across the different activities that use land.
At the top most level, aggregate land by type, TLand , is determined using a price sensitive supply
function. Three specifications are implemented. The first is a simple constant elasticity supply
function that might be a good local approximation but could pose problems in dynamic simulations
where land prices rise significantly. The other two functional forms have an explicit asymptote that
does not allow for land supply to increase beyond an exogenous upper supply limit, LandMax .
The second specification uses a logistic function, and the third uses a hyperbolic (as used in the
LEITAP/MAGNET) family of models. Equation (F-1) determines aggregate land supply by type lt
according to one of the three specifications. (N.B. The LandMax parameter was initially calibrated
to the FAO/GAEZ database at the aggregate level, i.e. for a single aggregate land-type. This
parameter is assumed to hold for all land-types (as the maximum percent increase), but will be
modified in the future to correspond to the 18 individual AEZs.)

TLand r,lt =



























αtl
r,lt

(

PTLandr,lt

PGDPMPr

)εfr,lt
if LandMax r,lt=∞

LandMax r,lt

1+αtl
r,lte

−γtl
r,lt

(PTLandr,lt/PGDPMPr)
if LandMax r,lt 6=∞, ifLogLand=1

LandMax r,lt − αtl
r,lt

(

PTLandr,lt

PGDPMPr

)−γtl
r,lt

if LandMax r,lt 6=∞, ifLogLand=0

(F-1)

We have seen above on the production side that each land-using activity demands land of type
lt . The allocation of land supply across activities assumes some friction in land transformability.
For example, it may be difficult to convert wheat land into rice land. A nested CET structure is
used to determine the allocation of aggregate land, TLand , across the various land-using activities

25 Starting with release 9, there will be five labor categories—2 of which are associated with skilled labor and the
other 3 with unskilled labor
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indexed by a. Land-using activities are divided into three fundamental land-types, Land ltb , indexed
by ltb. For a single nested CET, all land-using activities could be allocated to the first land bundle,
Land lt1 , and the other two land bundles would be redundant. In the case of the LEITAP/MAG-
NET model, the first bundle is composed of fruits and vegetables, other crops and other livestock.
The second bundle consists of sugar and pasture land (for ruminant production). And the third
bundle consists of cereals. The GTAP AEZ model has a different nesting. The first bundle consists
of only forestry.26 The second bundle consists of pasture (for ruminant production). And the third
bundle consists of all crops (not just cereals as is the case for the LEITAP/MAGNET specifica-
tion.) To add additional flexibility and for more transparency, the implementation of these CET
nests includes some additional nests compared to either the LEITAP/MAGNET of GTAP/AEZ
specifications. This requires the introduction of an intermediate land bundle, LndBnd , and addi-
tional CET elasticities, but that can be easily initialized to replicate the specifications of the two
aforementioned models. Figure 3.10 provides an illustration of the generic land allocation CET
nesting.

Total land
(TLand lt )

First land bundle
(Land lt,lt1 )

Land-using activities mapped
to first land bundle

Intermediate land
bundle (LndBnd lt )

Second land
bundle (Land lt,lt2 )

Land-using activities mapped
to second land bundle

Third land
bundle (Land lt,lt3 )

Land-using activities mapped
to third land bundle

ωtl1

ωt
r,lt,lt1 ωtl2

ωt
r,lt,lt2 ωt

r,lt,lt3

Figure 3.10: Land allocation nesting

The aggregate land bundle, TLand , is thus first decomposed into the first land bundle, Land lt1 ,
and the intermediate land bundle, LndBnd , with a CET transformation elasticity of ωtl1 . The
supply functions are provided in equations (F-2) and (F-3). The revenue consistency equation is
given by equation (F-4) and could be replaced by the CET dual price expression (in the case of a
finite transformation). The specification allows for perfect transformation in which case the law-of-
one-price must hold and the prices of the component bundles must equal the price of the aggregate
bundle.







Land r ,lt ,lt1 = αLand
r ,lt ,lt1

(

PLand r,lt,lt1

PTLand r,lt

)ωtl1
r,lt

TLand r ,lt if ωtl1
r ,lt 6= ∞

PLand r ,lt ,lt1 = PTLand r ,lt if ωtl1
r ,lt = ∞

(F-2)







LndBnd r ,lt = αLndBnd
r ,lt

(

PLndBndr,lt

PTLand r,lt

)ωtl1
r,lt

TLand r ,lt if ωtl1
r ,lt 6= ∞

PLndBnd r ,lt = PTLand r ,lt if ωtl1
r ,lt = ∞

(F-3)

26 Note that in the AEZ database, payments to natural resources in the forestry sector are converted to land
payments (after adjustments).
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PTLand r ,ltTLand r ,lt = PLand r ,lt ,lt1Land r ,lt ,lt1 + PLndBnd r ,ltLndBnd r ,lt (F-4)

In the next node of the CET nest, the intermediate bundle, LndBnd , is decomposed into the
other two land bundles, with a transformation elasticity given by ωtl2 . The supply equations for
the bundles are provided in equations (F-5) and (F-6) with the revenue consistency equation given
by equation (F-7).







Land r ,lt ,lt2 = αLand
r ,lt ,lt12

(

PLand r,lt,lt2

PLndBnd r,lt

)ωtl2
r,lt

LndBnd r ,lt if ωtl2
r ,lt 6= ∞

PLand r ,lt ,lt2 = PLndBnd r ,lt if ωtl2
r ,lt = ∞

(F-5)







Land r ,lt ,lt3 = αLand
r ,lt ,lt13

(

PLand r,lt,lt3

PLndBnd r,lt

)ωtl2
r,lt

LndBnd r ,lt if ωtl2
r ,lt 6= ∞

PLand r ,lt ,lt3 = PLndBnd r ,lt if ωtl2
r ,lt = ∞

(F-6)

PLndBnd r ,ltLndBnd r ,lt = PLand r ,lt ,lt2Land r ,lt ,lt2 + PLand r ,lt ,lt3Land r ,lt ,lt3 (F-7)

The final equations in the decomposition of the land bundle allocate land supply to the different
land-using activities based on their mappings to one of the three land bundles. The user-cost of land
of type lt in activity a is given by PLnd , and the supplier cost is given by NPLnd . Equation (F-8)
determines the supply of land to activity a. (N.B. The land equations—on both the demand and
supply side—integrate the market equilibrium condition, hence there is no special notation for the
demand and supply variables.) Each of the land-using activities a is mapped to one, and only
one of the three land bundles indexed by ltb. Equation (F-9) is the standard revenue consistency
equation for the CET function. As mentioned earlier, the LEITAP/MAGNET model maps fruits
and vegetables, other crops and other livestock to the first bundle, lt1 . LEITAP/MAGNET does
not actually implement the bundle, instead these activities are mapped directly to the top level
land aggregate. The implication of this is that the second level CET elasticity for bundle lt1 is
equal to the top level CET elasticity:

ωt
r ,lt ,lt1 = ωtl1

r ,lt

Similarly, the second level nest contains the sugar and pasture activities. This implies that the
third level elasticity for bundle lt2 is equal to the second level CET elasticity of the intermediate
land bundle:

ωt
r ,lt ,lt2 = ωtl2

r ,lt







Lnd r ,lt ,a = αs,Lnd
r ,lt ,a

(

NPLndr,lt,a

PLandr,lt,ltb

)ωt
r,lt,ltb

Land r ,lt ,ltb if ωt
r ,lt ,ltb 6= ∞, a ∈ ltb

NPLndr ,lt ,a = PLand r ,lt ,ltb if ωt
r ,lt ,ltb = ∞, a ∈ ltb

(F-8)

PLand r ,lt ,ltbLand r ,lt ,ltb =
∑

a∈ltb

NPLndr ,lt ,aχ
lnd
r ,lt ,aLnd r ,lt ,a (F-9)
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3.8.2 Labor markets

In the standard Envisage model, labor markets clear nationally with an economy-wide wage
rate equating supply and aggregate demand—separately for both skilled and unskilled labor. The
model does not allow for international migration. An alternative version of the model allows for
national labor market segmentation with a Harris-Todaro type migration function from rural to
urban activities.27 Due to data limitations, rural activities are equated with agricultural sectors
and urban activities with all other sectors.

Sectoral labor demand across sectors (indexed by a) is determined by the production function
in each sector. Sectors are segmented into two ’zones’—rural and urban, indexed by z. The basic
idea behind Harris-Todaro is that migration is a function of the ratio of the urban wage to the rural
wage. Equation (F-10) defines the average wage in each zone z, W a. It is equal to total nominal
labor remuneration in each zone divided by total volume demand (in person-years for example).
Equation (F-11) then determines the level of migration from rural to urban zones, MG , as a function
of the ratio of the nominal average wage in each zone (potentially adjusted for unemployment, i.e.
the expected average wage), subject to a migration elasticity (ωm), where χm is a calibrated shift
parameter. Equation (F-12) determines the zone-specific labor supply, Ls. It is equated to the
previous period’s labor supply adjusted by a zone-specific (and exogenous) labor supply growth
rate and adjusted for migration. The parameter δz is equal to -1 for the rural zone and equal
to +1 for the urban zone. In the case of no labor market segmentation, MG is equal to zero.28

Equation (F-13) represents the equilibrium condition for the two possible specifications. The top
equation equates supply by zone to demand by zone (under the assumption of full employment)
with segmented markets. The bottom equation holds for the case with a nationally integrated labor
market. Finally, equation (F-14) sets the sectoral wage. With segmented markets it is equal to
the equilibrium wage in the relevant zone—potentially adjusted by a sector-specific wage premium
that allows for inter-sectoral wage differences. With national markets, it is equal to the national
equilibrium wage rate with again the possibility of a wage premium.

W a
r,l,z =

∑

a∈z

NPF r,l,aXF r,l,a

∑

a∈z

XF r,l,a

(F-10)

MGr,l = χm
r,l

[

(1− UEr ,l ,Urb)W
a
r,l,Urb

(1− UEr ,l ,Rur)W
a
r,l,Rur

]ωm
r,l

if ωm
r,l 6= ∞ (F-11)

Ls
r,l,z,t =

(

1 + glr,l,z,t

)

Ls
r,l,z,t−1 + δzMGr,l,t (F-12)











Ls
r,l,z =

∑

a∈z

XF r,l,a if ωm
r,l 6= ∞

∑

z

Ls
r,l,z =

∑

a

XF r,l,a if ωm
r,l = ∞

(F-13)

{

NPF r,l,a = πwr,l,aW
ez
r,l,z if ωm

r,l 6= ∞, a ∈ z

NPF r,l,a = πwr,l,aW
e
r,l if ωm

r,l = ∞
(F-14)

27 See Harris and Todaro (1970).
28 Appendix E describes how model equations are adjusted for inter-period gaps of greater than one year.
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3.8.3 Market for sector-specific factors

The sector specific factor—normally the natural resource base in natural resource sectors—is han-
dled using an upward sloping supply curve with the elasticity given by εff or by a logistic function
with a specified maximum supply, see equation (F-15).29 If the former is infinite, the return to the
sector specific factor is assumed to rise at the same rate as the GDP deflator, see equation (F-16),
else it is determined by market equilibrium. The finite supply curve has three shifters. The first,
αfs , is calibrated with base year data. The second, αrfs , can be calibrated in a dynamic scenario
to target a region specific variable, for example output or the regional producer price. The third,
αgfs , can be calibrated in a dynamic scenario to target a global variable, for example global output
or the global price. In this case, the shifter moves each country/regional supply curve by the same
proportional amount.



















XF s
r,a = αrfs

r,aα
gfs
a αfs

r,NatRs,a

(

NPF r,NatRs,a

PGDPMPr

)εffr,a

if εffr,a 6= ∞,XFmax
r,a = ∞

XF s
r,a =

XFmax
r,a

1 + αfs
r,NatRs,ae

−γfs
r,a(NPF r,NatRs,a/PGDPMPr)

if εffr,a 6= ∞,XFmax
r,a 6= ∞

(F-15)

{

XF s
r,a = XF r,NatRs,a if εffr,a 6= ∞

NPF r,NatRs,a,t = PGDPMPrNPF r,NatRs,a,t−1 if εffr,a = ∞
(F-16)

3.8.4 Depletion modules for fossil fuel resources

The first part of this section describes the core functioning for the resource depletion modules for
the fossil fuel extraction sectors. Reserves are divided into two pools—proven and unproven, or
yet-to-discover reserves. Extraction is done at a rate of ρx from proven reserves, Res :

XF p = ρxRes

where XF p is potential extraction, not necessarily actual extraction. Reserves evolve according to
the following motion equation:

Res t = Res t−1 − XF t−1 + ξxYTFRt−1

i.e. the level of reserves at the beginning of time period t is equal to the previous period’s reserve
level, less actual extraction, XF , plus additions to reserves, i.e. the conversion of yet-to-discover
reserves into proven reserves. The discovery rate, ξx, will be sensitive to the output price of the
relevant fossil fuel.If the actual level of extraction is equal to the potential rate of extraction we
have:

Res t = (1− ρxt−1)Res t−1 + ξxt−1YTFRt−1 ⇐⇒ XF t−1 = XF
p
t−1 = ρxtRes t

Assuming extraction equals potential extraction in all time periods, the equation above can be
converted for multi-year time steps to the following:

Res t = (1− ρx)nRes t−n +
(1− ξx)n − (1− ρx)n

ρx − ξx
ξxYTFRt−n

29 A future version of the model will see development of a resource depletion module for natural gas and crude oil.
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though takes the following expression when the two rates are equal:

Res t = (1− ρx)nRes t−n + n (1− ρx)(n−1) ξxYTFRt−n

If actual extraction is less than potential, the motion equation for reserves is derived from the
second equation above:

Res t = Res t−n + (1− (1− ξxt )
n)YTFRt−n − CXF t

where CFX represents cumulative extraction between period t− n and t− 1 and is evaluated by
the following expression:

CXF t =
XF t − XF t−n

(XF t/XF t−n)
(1/n) − 1

where the term in the denominator represents the average rate of growth of actual extraction
between t− n and t.30

The yet-to-find profile derives from the following motion equation:

YTFRt = (1− ξx)YTFRt−1

that in a multi-period time step converts to:

YTFRt = (1− ξx)nYTFRt−n

For fixed discovery and extraction rates, and if countries are on the depletion profile, cumulative
extraction can be described with the following expression:

n−1
∑

t=0

Extrt =

n−1
∑

t=0

ρtRes t = [1− (1− ρxt )
n]Res t−n

+ [ρxt (1− (1− ξxt )
n)− ξxt (1− (1− ρxt )

n)]
YTFRt−n

ρxt − ξxt

The formula becomes the following with the additional yet-to-discover reserves shifter:

n−1
∑

t=0

Extrt = = [1− (1− ρxt )
n]Res t−n

+

[

ρxt
1− (χx

t (1− ξxt ))
n

1− χx
t (1− ξx)

− (1− (1− ρxt )
n)

]

YTFRt−n

χx
t (1− ξxt )− (1− ρxt )

Conversion rate

The conversion rate (ξx), i.e. the rate at which unproven reserves are converted to proven reserves
is assumed to be price sensitive. Within specified ranges, the specification assumes a constant
elasticity function. The ranges are identified relative to a reference price growth path. If the
actual price growth is greater than the reference growth path, the conversion rate rises with one
elasticity. If the actual price growth is below the reference growth path, the conversion rate declines
with a different elasticity. Typically it is assumed that the ’low-path’ elasticity is greater than the

30 The denominator becomes 0 in the case of zero growth in the level of actual extraction, in which case the
cumulative extraction formula is simply n.XF t−n. The current code does not trap this potential issue as the
probability of such an occurrence is low.
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’high-path’ elasticity, i.e. it is relatively easier to lower the conversion rate than to raise it. The
specification also has lower and upper bounds on the conversion rate. Figure 3.11 provides an
example profile for the conversion rate. The reference conversion rate is 2 percent, i.e. of the
price path is exactly the reference path, the conversion rate is 2 percent. The elasticity below the
reference price path is 1.5, and it is 0.5 for the high-path elasticity. The bounds are set at 1.0 and
2.5 percent respectively for the lower and upper bounds. The figure shows both the conversion rate
and the elasticity. In principle there is a discontinuity in the first derivative at the inflection point,
i.e. at the reference price path the two elasticities flip.31 This is converted to a continuous function
using the sigmoid (or logistic function), defined as:

sigmoid(x) =
1

1 + e−x

Figure 3.11: Possible conversion rate profile
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The elasticity expression is defined by equation (F-17). The elasticity expression is a linear
combination of the ’Lo’ elasticity and the ’Hi’ elasticity. At low price path, i.e. where PRAT is less
than 1, the sigmoid function takes a value close to 0. On a high price path, the sigmoid function
takes a value close to 1. The κ parameter determines the ’length’ of the transition period between
using the ’Lo’ and ’Hi’ elasticities. The greater is κ the quicker the transition. A value of 30 leads to
a relatively quick transition. Equation (F-18) defines the price ratio for determining the elasticity.
The first term on the right calculates the annualized growth rate for the output price of the relevant
fuel, and this is compared with an exogenous trend reference price. Equation (F-19) defines the price
sensitive conversion rate, with the elasticity determined by equation (F-17), where the elasticity
depends on the actual price trend relative to the reference price trend. In the implementation
of the expression, the lower and upper bounds on the conversion rate are imposed as additional
constraints.

ωf
r,a = ωf,lo

r,a + sigmoid (κ(PRAT r,a − 1))
(

ωf,hi
r,a − ωf,lo

r,a

)

(F-17)

31 This was the original specification in the GREEN model, van der Mensbrugghe (1994).
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PRAT r,a,t =

(

PPr,a,t/PGDPMPr,t

PPr,a,t−n/PGDPMPr,t−n

)1/n 1

P ref
r,a,t

(F-18)

ξxr,a = ξ0r,aPRAT
ωf
r,a

r,a (F-19)

Reserve depletion

The next set of equations by and large replicate those from above as they apply to the Envisage
model. Equation (F-20) represents the cumulative extraction between period t − n and t − 1.
For n = 1 it reduces simply to lagged extraction as the fraction drops out.32 Equation (F-21)
describes the profile for actual reserves and equation (F-22) describes the profile for potential
reserves, i.e. if production is based on the maximum extraction rate. The former is based on the
expression Res t = Res t−1 − XF t−1 + ξxYTFRt−1, whereas the latter is based on the expression
Res t = (1−ρxt−1)Res t−1+ξ

x
t−1YTFRt−1. In both cases, the variable YTFR is adjusted by χx which

can be used to calibrate the reserve profile to a given price scenario or as an exogenous shifter in
specific scenarios. Equation (F-23) describes the profile for yet-to-discover reserves. In the absence
of any shift in the parameter χx, the unproven reserves can only decline over time.

CXF r,a,t = XF
1/n
r,a,t−n

XF r,a,t − XF r,a,t−n

XF
1/n
r,a,t − XF

1/n
r,a,t−n

(F-20)

Resr,a,t = Resr,a,t−n +
(

1−
[

χx
r,a,t

(

1− ξxr,a,t
)]n)

YTFRr,a,t−n − CXF r,a,t (F-21)

Res
p
r,a,t = (1− ρxr,a,t)

nRes
p
r,a,t−n + ξxr,a,tχ

x
r,a,tYTFRr,a,t−n

(

χx
r,a,t(1− ξxr,a,t)

)n
− (1− ρxr,a,t)

n

χx
r,a,t(1− ξxr,a,t)− (1− ρxr,a,t)

(F-22)

YTFRr,a,t =
(

χx
r,a,t(1− ξxr,a,t)

)n
YTFRr,a,t−n (F-23)

If a region is off its depletion profile, there is a gap between the depletion profile and actual
reserves and this gap can lead to a situation with production potential above production given
by the reserve profile. Equation (F-24) defines this gap that is captured in the variable Resg.
The expression is implemented as a mixed complementarity relation as the gap must be positive,
i.e. actual production cannot exceed potential production. Equation (F-25) defines potential
production. If there is no gap between actual extraction and potential extraction, production is
simply equal to the product of the extraction rate and the potential level of reserves. If actual
production is below potential, the reserve gap (adjusted for the time-period gap) is added to
potential production.

Resgr,a ≥ Resr,a − Respr,a ⊥ Resgr,a ≥ 0 (F-24)

XF p
r,a = ρxr,aRes

p
r,a +

Resgr,a

n
(F-25)

[Still to be described]. In GREEN for the oil markets, countries are segmented into two groups—
those with price sensitive supply and those on the reserve profile. For those on the reserve profile,

32 At the moment, the model specification ignores the situation of zero-growth in the level of extraction. The
formula would need to be replaced with n.XF r,a,t−n.
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Resg is set to zero and XF = XF p. Those with price sensitive supply, their production is described
by:

XFt = min

[

XF t−n

(

PP t/PGDP t

PP t−n/PGDP t−n

)ηft

,XF p
t

]

For natural gas, the notional supply of the fixed factor is either infinite or with an upward
sloping supply curve:

XFNot =







XF d if ηf = ∞

XF s
t−n

[

PF t/PGDPt

PF t−n/PGDPt−n

]ηft
if ηf 6= ∞

XF s = min
[

XFNot ,XF p
]

3.8.5 Capital markets in comparative statics

This section describes capital allocation across sectors in the comparative static version of the
model. It is based on a nested CET structure. The top nest allows for international capital
mobility depending on the value of the CET elasticity. The second nest implements inter-sectoral
capital mobility. Starting with the top nest, global capital is given by TKAP . It is allocated
across the modeled regions under a CET specification with a transformation elasticity given by ωk.
Equation (F-26) determines regional supply of aggregate capital and equation (F-27) determines
the average global price of capital, TRENT .







XFT s
r,Captl = βkr

(

PFT r,Captl

TRENT

)ωk

TKAP if ωk 6= ∞

PFT r,Captl = TRENT if ωk = ∞
(F-26)

TRENT .TKAP =
∑

r

PFT r,CaptlXFT r,Captl (F-27)

The next nest in the capital allocation module determines the sectoral supply of capital, where
the mobility of capital is captured in the CET transformation elasticity given by ωf . Equa-
tion (F-28) determines sectoral capital supply in the case of a finite transformation elasticity.
Equation (F-29) determines the aggregate regional return to capital. In the case of an infinite
transformation, this is replaced with the adding up condition in volume terms. Note that this
equation is also used in the dynamic version of the model which at the margin assumes perfect
capital mobility across activities (see below).







XF r,Captl ,a = αfs
r,Captl ,a

(

NPF r,Captl,a

PFT r,Captl

)ωf
r,Captl

XFT r,Captl if ωf
r,Captl 6= ∞

NPF r,Captl ,a = PFT r,Captl if ωf
r,Captl = ∞

(F-28)







PFT r,Captl =
[

∑

a α
fs
r,Captl ,a (NPF r,Captl,a)

1+ωf
r,Captl

]1/(1+ωf
r,Captl

)

if ωf
r,Captl 6= ∞

XFT r,Captl =
∑

aXF r,Captl ,a if ωf
r,Captl = ∞

(F-29)
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3.8.6 Capital markets with the vintage capital specification

This section describes sectoral capital allocation under the assumption of multiple vintage capital.
Capital market equilibrium under the vintage capital framework assumes the following:

New capital is perfectly mobile and its allocation across sectors insures a uniform rate of
return.

Old capital in expanding sectors is equated to new capital, i.e. the rate of return on Old

capital in expanding sectors is the same as the economy-wide rate of return on new capital.

Declining sectors release Old capital. The released Old capital is added to the stock of New
capital. The assumption here is that declining sectors will first release the most mobile types
of capital, and this capital, being mobile, is comparable to New capital (e.g. transportation
equipment).

The rate of return on capital in declining sectors is determined by sector-specific supply and
demand conditions.

The result of these assumptions is that if there are no sectors with declining economic activity,
there is a single economy-wide rate of return. In the case of declining sectors, there will be an
additional sector-specific rate of return on Old capital for each sector in decline.

To determine whether a sector is in decline or not, one assesses total sectoral demand (which
of course, in equilibrium equals output). Given the capital-output ratio, it is possible to calculate
whether the initially installed capital is able to produce the given demand. In a declining sector,
the installed capital will exceed the capital necessary to produce existing demand. These sectors
will therefore release capital on the secondary capital market in order to match their effective
(capital) demand with supply. The supply schedule for released capital is a constant elasticity of
supply function where the main argument is the change in the relative return between Old and
New capital. Supply of capital to the declining sector is given by the following formula:

Ks
a,Old = K0

a [Ra,Old/Ra,New ]
ηka

where Ks
Old is capital supply in the declining sector, K0 is the initial installed (and depreciated)

capital in the sector at the beginning of the period, and ηk is the dis-investment elasticity. (Note
that in the model, the variable R is represented by PF .) In other words, as the rate of return on
Old capital increases towards (decreases from) the rate of return on New capital, capital supply
in the declining sector will increase (decrease). Released capital is the difference between K0 and
Ks

Old . It is added to the stock of New capital. In equilibrium, the Old supply of capital must equal
the sectoral demand for capital:

Ks
a,Old = KV a,Old

Inserting this into the equation above and defining the following variable:

RRa = Ra,Old/Ra,New

yields the following equilibrium condition:

KV a,Old = K0
a [RRa]

ηka
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The supply curve is kinked, i.e. the relative rate of return is bounded above by 1. If demand for
capital exceeds installed capital, the sector will demand New capital and the rate of return on Old

capital is equal to the rate of return on New capital, i.e. the relative rate of return is 1. The kinked
supply curve has been transformed into a mixed complementarity (MCP) relation. The following
inequality is inserted in the model:

Ks
a,Old = K0

a [RRa]
ηka ≤ Kd,Not

a = χv
aXPa

The right-hand side determines the notional demand for capital in sector a, i.e. it assesses aggregate
output (equal to demand) and multiplies this by the capital output ratio for Old capital. This is
then the derived demand for Old capital. If the installed capital is insufficient to meet demand
for Old capital, the sector will demand New capital, and the inequality obtains with the relative
rates of return capped at 1. If the derived demand for Old capital is less than installed capital, the
sector will release capital according to the supply schedule. In this case the inequality transforms
into an equality, and the relative rate of return is less than 1.

Equation (F-30) determines the capital output ratio, χv for Old capital. Equation (F-31)
specifies the supply schedule of Old capital. In effect, this equation determines the variable RR,
the relative rate of return between Old and New capital.

χv
r,a =

KV r,a,Old

XPvr,a,Old

(F-30)

K0
r,a (RRr,a)

ηkr,a ≤ χv
r,aXPr,a ⊥ RRr,a ≤ 1 (F-31)

There is a single economy-wide rate of return on New capital. The equilibrium rate of return
on New capital is determined by setting aggregate supply equal to aggregate demand. Aggregate
demand for new capital is given by:

∑

a∈Expanding

∑

v

KV a,v

where the set Expanding includes all sectors in expansion. Since Old capital in expanding sectors
is equated with New capital, the appropriate sum is over all vintages. The aggregate capital stock
of New capital is equal to the total capital stock, less capital supply in declining sectors:

Ks −
∑

a∈Declining

Ks,Old
a

where the set Declining covers only those sectors in decline. However, at equilibrium, capital supply
in declining sectors must equal capital demand for Old capital, and capital demand for New capital
in these sectors is equal to zero. Hence, the supply of Old capital in declining sectors can be shifted
to the demand side of the equilibrium condition for New capital, and this simplification yields
equation (F-32) which determines the economy-wide rate of return on New capital. Equation (F-33)
adds up capital demand across vintages. Equation (F-34) determines the vintage and sector specific
rates of return.33 For New capital, RR is 1 and thus the rate of return on New capital is always
equal to the economy-wide rate of return (adjusted by the factor tax). For Old capital, if the

33 These are the net rates of return after tax. Thus the relative rate of return variable, RR, is defined in terms of
the net rate of return.
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sector is in decline, RR is less than 1 and the rate of return on Old capital will be less than the
economy-wide rate of return (adjusted by the factor tax).

∑

a

XF r,Captl,a = XFT r,Captl (F-32)

XFr ,Captl ,a =
∑

v

KV r ,a,v (F-33)

PKV r,a,v =
(

1 + τ vtaxr,Captl,a + τ vsubr,Captl,a

)

RRr,aPFT r,Captl (F-34)

3.8.7 Allocation of output across vintages

This section describes how output is allocated across vintages. Aggregate sectoral output, XP ,
is equated to aggregate sectoral demand and is derived from XS , which itself is derived from a
CET aggregation of XD and XET . Given the beginning of period installed capital, it is possible
to assess the level of potential output produced using the installed capital. If this level of output
is greater than the aggregate output (demand) level, the sector appears to be in decline, installed
capital will be released, Old output will be equated with aggregate output (demand), and New

output is zero. Equation (F-35) equates aggregate output, XP , to the sum of output across all
vintages. Equation (F-36) determines output that can be derived from installed, or Old capital, thus
equation (F-35) in essence determines output produced with New capital by residual. Old output is
equated to the sectoral supply of Old capital, divided by the capital/output ratio. Equation (F-37)
sets the aggregate price of capital—in both declining and expanding sectors it is equal to the rate
of return on Old capital.

XPr,a =
∑

v

XPvr,a,v (F-35)

XPvr,a,Old = K0
r,a (RRr,a)

ηkr,a /χv
r,a (F-36)

PF r,Captl ,a = PKV r,a,Old (F-37)

The final set of equations link user prices of factors with the market price (or the returns to
the owners of the factors). Equation (F-38) links the user-price of all factors of production to the
after-tax sectoral price of each of the factors. With the introduction of the AEZ database, the next
set of equations close the land markets by incorporating the various taxes and subsidies on land
use. Equation (F-39) incorporates the taxes and subsidies applied at the activity and land-type
level, where LndTax and LndSub represent the ad valorem wedges. Equations (F-40) and (F-41)
determine respectively the average tax and subsidy on land use by activity, where the average is
over all land types indexed by lt .

PF r,fp,a =
(

1 + τ vtaxr,fp,a + τ vsubr,fp,a

)

NPF r,fp,a (F-38)

PLnd r,lt ,a = (1 + LndTax r,lt ,a + LndSubr,lt ,a)NPLndr,lt,a (F-39)

τ vtaxr,LandR,aNPF r,LandR,aXF r,LandR,a =
∑

lt

LndTax r,lt ,aNPLndr,lt ,aLnd r,lt ,a (F-40)

τ vsubr,LandR,aNPF r,LandR,aXF r,LandR,a =
∑

lt

LndSubr,lt,aNPLndr,lt ,aLnd r,lt,a (F-41)
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3.9 Macro closure

Equation (M-1) defines the government accounting balance, Sg. It is the difference between rev-
enues and expenditures, the latter including some share of stock-building expenditures. Government
expenditures, split between R&D and other expenditures, are typically fixed relative to GDP in
the baseline and fixed in level terms in subsequent simulations—see equations (G-7)-(G-9). Equa-
tion (M-2) defines real government savings. Real government savings are fixed—to insure at the
least debt sustainability. Nominal revenues are endogenous. The direct tax schedule shifts to
achieve the given fiscal target (using the χk shifter). Equation (M-3) defines foreign savings, Sf .
These are fixed in numéraire terms for all regions save a residual region (indexed by rSav ). Equa-
tion (M-4) insures capital flow equilibrium at the global level (and in effect defines foreign savings
for the residual region).34 Equation (M-5) defines the depreciation allowance. Equation (M-6)
represents the investment/savings balance, with aggregate gross investment expenditures on the
left-side and total available savings on the right, including the depreciation allowance and adjusted
for stock-building expenditures. The model’s price anchor, or numéraire, PNUM , is defined in
equation (M-7). It is defined as the unit value of manufactured exports from the high-income coun-
tries, where the set defined by Numer spans the manufactured sectors. One equation needs to be
dropped from the model specification and typically one equation from equation (M-6) is dropped.
This in fact represents a global Walras’ Law that has global investment equal to global savings.

Sg
r = YGr − PC r,GovXC r,Gov − ψstb

r,Gov

∑

i

PAr,i,stbXAr,i,stb (M-1)

RSgr = Sg
r/PGDPMPr (M-2)

Sf
r = PNUM .S

f
r for r /∈ rSav (M-3)

∑

r

Sf
r ≡ 0 (M-4)

DeprY r = δrPC r,InvKr (M-5)

PC r,InvXC r,Inv =
∑

h

Sh
r,h + Sg

r + Sf
r +DeprY r − ψstb

r,Inv

∑

i

PAr,i,stbXAr,i,stb (M-6)

PNUM =
∑

r∈HIC

∑

d

∑

i∈Numer

φnr,d,iWPE r,d,i (M-7)

The following block of equations provides the main macroeconomic identities. Nominal and
real GDP at market price, GDPMP and RGDPMP , are provided in Equations (M-8) and (M-9),
respectively. The GDP at market price deflator, PGDPMP , is defined in equation (M-10). Per
capita real output, RGDPPC , is defined in equation (M-11). Equation (M-12) defines real per
capita income growth. And the GDP absorption shares, GDPShr , are provided in equation (M-13).

34 Alternative versions of the model allow for partial mobility of global savings. These are described in Appendix D.
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Equation (M-14) defines real domestic absorption—it is the sum of household, government and
investment real expenditures.

GDPMPr =
∑

i

[

∑

in

PAr,i,inXAr,i,in + PAr,i,stbXAr,i,stb

]

+
∑

i∈im

[

∑

d

WPE r,d,iWTF r,d,i −
∑

s

WPM s,r,iWTF s,r,i

]

+
∑

ih

NT r,ih + PTMGrXTMGr

(M-8)

RGDPMPr =
∑

i

[

∑

in

PAr,i,in,0XAr,i,in + PAr,i,stb,0XAr,i,stb

]

+
∑

i∈im

[

∑

d

WPE r,d,i ,0WTF r,d,i −
∑

s

WPM s,r,i ,0WTF s,r,i

]

+
∑

ih

PW ih,0 (XET r,ih − XMT r,ih) + PTMGr,0XTMGr

(M-9)

PGDPMPr = GDPMPr/RGDPMPr (M-10)

RGDPPC r = RGDPMPr/Popr (M-11)

g
ypc
r,t =

(

RGDPPC r,t

RGDPPC r,t−n

)1/n

− 1 (M-12)

GDPShr r,in =
PC r,inXC r,in

GDPMPr
(M-13)

RYDr,t =
∑

in

PAr,i,in,0XAr,i,in (M-14)

The default closure rules of the model are as follows:

Household savings are endogenous and are either driven by the demographic-influenced sav-
ings function or as part of the ELES consumer demand system.35

Government revenues are endogenous and government expenditures, as a share of nominal
GDP, are fixed, thus total expenditures are endogenous. The government balance is fixed,
in part to avoid problems of financing sustainability. The government balance is achieved
with a uniform shift in the household direct tax schedule. This implies that new revenues,
for example generated by a carbon tax, would lower direct taxes paid by households.

Investment is savings driven. Household and government savings were discussed above. For-
eign savings, in the default closure are fixed. Thus investment is largely influenced through
household savings.36

35 The latter may allow for demographics and other factors to influence the ELES parameters between periods in
the dynamic setting where ELES parameters may be re-calibrated.

36 Alternative closures are conceivable, for example targeting investment (as a share of GDP) and allowing the
household savings schedule adjust to achieve the target.
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The current account, the mirror entry of the capital account, is exogenous. Ex ante changes
to trade, for example a rise in the world price of imported oil, is met through emphex post
changes in the real exchange rate.

3.10 Model dynamics

3.10.1 Factors and technology

Model dynamics are driven by three factors—similar to most neo-classical growth models. Pop-
ulation and labor force growth rates are exogenous and given essentially by the UN Population
Division scenario. The labor force growth rate is equated to the growth rate of the working age
population, i.e. the population aged between 15 and 64.37

The second factor is capital accumulation. The aggregate capital stock in any given year,
KStock , is equated to the previous year capital stock, less depreciation at a rate of δ, plus the
previous period’s volume of investment, XC Inv , see equation (G-1). The latter is influenced by the
national savings rate plus foreign savings and, as well, the unit cost of investment. The aggregate
capital stock variable takes two forms. The first, KStock , is the aggregate capital stock evaluated
at base year prices. The second is the ’normalized’ aggregate capital stock, XFT . The normalized
capital stock is equal to the tax inclusive base year capital remuneration, i.e. the user cost of
capital across sectors. It is normalized because its price is set to 1 in the base year. The ratio of the
normalized capital stock to the actual capital stock provides a measure of the gross rate of return
to capital. It is assumed that both measures of the capital stock grow at the same rate and hence
equation (G-2) that equalizes the ratio of the two measures.38

KStock r,t = (1− δr,t)KStock r,t−1 + XC r,inv ,t−1 (G-1)

XFT r,Captl ,t =

(

XFT r,Captl ,0

KStock r,0

)

KStock r,t (G-2)

The third factor is productivity. There are a number of productivity factors peppered throughout
the model. The key productivity factor is λf that corresponds to converting factor in volume
terms to factors in efficiency units. It is typically initialized at 1 in the base year. Equation (G-3)
represents labor productivity growth across sectors. The factor γl represents an economy-wide
labor productivity growth factor—that is either exogenous, or can be used to target a growth rate
such as the GDP growth rate. If the factor π is set to 0 and χl is set to 1, labor productivity growth
is assumed to be uniform across all sectors. The latest version of the model includes a new term,
πn, that represents an endogenous response to expenditures in R&D and knowledge accumulation,
described further below.

λfr,l,a,t =
(

1 + πnr,a + πr,a + χl
r,aγ

l
r

)

λfr,l,a,t−1 (G-3)

The following assumptions are made regarding productivity:

Sectors are typically segmented into three groups—agriculture, manufacturing and services.

37 In future work, these assumptions will be linked to other variables influencing both the decision to work (i.e.
the labor force participation rate) and the skill level (via assumptions on education).

38 It is important to use the actual capital stock in the capital accumulation function since the level of investment
must correspond to the actual capital stock, not the normalized level.
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Productivity in agriculture is exogenous and factor neutral. The λn and λv parameters are
set to grow at some exogenous and uniform rate. [To be modified].

In most sectors, productivity is assumed to be labor augmenting only—and is uniform across
both skilled and unskilled labor. This is represented by the variable γl.

There can be sector specific adjustments to the economy-wide labor productivity factor. These
adjustments are represented by the parameters π and χl—the former is an additive wedge
(for example 2 percentage points higher in manufacturing than in services) and the latter
is a multiplicative wedge. The default assumptions has π equal to 2 (percentage points) in
manufacturing and 0 for all other sectors and χl is 1 across all sectors with the exception
of agriculture, where it is assumed to have a value of 0. [To be modified]. Various other
assumptions are possible and have been used to fine-tune the calibration of the baseline
scenario.

In the calibration, or business-as-usual scenario, the economy-wide productivity factor, γl, is
calibrated to achieve some target level of per capita growth, at least for some period, including
historical validation from the base year to some current year (say from 2007 to 2012), and
including some medium term horizon such as 2015. After 2015, the parameter γl can be
fixed and per capita growth then is an endogenous variable. In most policy scenarios, the γl

parameter is fixed.

Energy efficiency is assumed to improve at some exogenous rate that influences the λe pa-
rameter.

International trade and transport margins, τ rm , are assumed to improve at some exogenous
rate.

3.10.2 R&D and knowledge

The latest version of the model allows for an endogenous component to productivity growth that
is linked to expenditures on research and development (R&D) and the accumulation of knowledge.
Expenditures on R&D are exogenous (and by default set to some percentage of GDP and financed
by the government.) The stock of knowledge is treated in a similar fashion to physical capital:

KN t = (1− δnt )KN t−1 + R&Dt−1

but with some additional twists, where KN is the stock of knowledge, δn represents the ’deprecia-
tion’ of knowledge and R&D is the level of R&D expenditures. The main twist is the assumption
that there is a distributed lag process between the expenditures and their impact on the knowl-
edge stock. The distributed lag process that is implemented is the Gamma distribution that has
been used in Smeets Kř́ıstková, van Dijk, and van Meijl (2016) and CHECK FOR OTHERS (Her-
tel Baldos, Alston et al Springer) in the case of agriculture. In this case the accumulation of the
stock of knowledge becomes:

KN t = (1− δnt )KN t−1 +
N
∑

k=0

γkR&D t−k−1

where γk represents a set of weights that sum to 1, i.e. eventually each $ spent has a positive and
full impact on knowledge, but only over a period of N years and with a different profile depending
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on the parameters of the Gamma distribution. The Gamma distribution is given by the following
expression:

γk = χ (k + 1)δ/(1−δ) λk

where δ and λ determine the shape of the distribution and χ is a scale factor that guarantees that
the weights sum to 1. Figure (3.12) provides a sample of possible shapes for the distribution of the
weights.

Equation (G-4) represents the knowledge stock motion equation as implemented in the model.39

The upper limit on the summation is the minimum of N , the length of the Gamma distribution
that is region specific, and the term t− t0, which represents the number of years for which lagged
R&D expenditures are available. For the first simulation year, for example, there will only be two
years for which R&D expenditures are available.40

KN r,t = (1− δnt )KN r,t−1 +

min (Nr ,t−t0)
∑

k=0

γnr,kR&Dr,t−k (G-4)

The knowledge stock motion equation is paired with an equation that defines the share of the
stock of knowledge with respect to GDP, equation (G-5). In the dynamic calibration scenario, this
equation can be used to smooth the knowledge stock in the initial periods as typically the model
will not have the required lags for R&D expenditures. It is possible to provide a given level for
the knowledge stock to GDP ratio and to make the knowledge ’depreciation’ rate an endogenous
variable—that will most likely take negative values.

KNYRatr,t = KN r,t/RGDPMPr,t (G-5)

The endogenous part of productivity growth is linked to the growth of the knowledge stock
through equation (G-6). The elasticity of endogenous productivity with respect to the growth of
knowledge is given by the parameter ǫr. It is assumed to be time variant. The parameter γr

converts the economy-wide impact into a sector-specific impact. By default it is assumed that the
sector-specific impact is uniform across sectors. One possible alternative is to set γr equal to χl

which is the sector specific component of the labor productivity multiplicative shifter.

πnr,a,t = γrr,a,tǫ
r
r,t

[

KN r,t

KN r,t−1
− 1

]

(G-6)

R&D expenditures are extracted from total government expenditures.41 Equations (G-7) and
(G-8) define the expenditure shares of R&D and other public expenditures as a share of GDP. In
the baseline scenario, a path might be set for the ratios that would then determine the expenditure

39 This equation as currently coded in GAMS requires 1-year time steps.
40 The GAMS code for implementing the stock of knowledge is the following:

rstock(r,t) =e= (1 - rdepr(r,t))*rstock(r,t-1)

+ sum(kr$(ord(kr) le min(maxK(r), (years(t) - year0))),

gammard(r,kr)*sum(tlag$(ord(tlag) eq (ord(t) - ord(kr) + 1)), r d(r,tlag))) ;

The second sum looks to pair the weight k with the appropriate lag. For example, when k = 0 (i.e. ord(kr)

eq 1) we want the contemporaneous level of R&D expenditures (i.e. r dt), thus the difference in ord(tlag) and
ord(t) should be zero and so ord(k) must be 1.

41 It is assumed that public R&D expenditures have the same cost structure as other public expenditures on goods
and services.
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Figure 3.12: Gamma distribution examples
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levels. In subsequent scenarios, one would hold fixed the expenditure levels and let the ratios be
endogenous. Equation (G-9) links these two expenditures to aggregate public expenditures.

R&DYRatr,t = R&Dr,t/RGDPMPr,t (G-7)

XCGYRatr,t = XCGr,t/RGDPMPr,t (G-8)

XC r,Gov ,t = R&Dr,t + XCGr,t (G-9)

3.10.3 Preferences

The model is designed to handle changes in preferences in two ways. The first way uses a so-
called ’twist’ specification.42 As originally formulated, the ’twist’ parameter is used to modify the
share parameters in CES functions (for example the capital/labor ratio or the ratio of domestic
to imported goods in the Armington function) such that the aggregate cost is unchanged.43. The
twist is given by the following formula:

R1

R0
= 1 + tw

The ratio R, in the case of the capital/labor ratio would beK/L and the twist is intended to change
that ratio by tw percent. In the case of the adjusted CES, i.e. the volume preserving CES, the
twist formula takes the form of:

αk
1 = αk

0

[

rk0 +
1− rk0
1 + tw

]1/σ

and

αl
1 = αl

0

[

rk0(1 + tw) + (1− rk0)
]1/σ

where αk and αl are respectively the capital and labor share parameters in the adjusted CES func-
tion and rk is the volume share of capital, i.e. rk = K/X, where X is the aggregate capital/labor
bundle. The twist can be generalized to cover multiple-component CES functions, for example a
power bundle that is composed of conventional power technologies and renewable technologies.

Say that renewables start out at some share of power, for example r0. We wish to make them
r in year T . For this we implement the ’twist’ for the share parameters. The twist is implemented
on the power bundles that preserve additivity using the adjusted CES. The annual twist parameter
is calculated using the following formula:

tw =

[

r

r0

1− r0
1− r

]1/(T−T0)

− 1

where T is the final year (for example 2050) and T0 is the initial year, for example 2011. If r0 is
2 percent and r is 10 percent (i.e. a five-fold increase in the share), the relevant annual twist over
39 years is around 4.4 percent.

42 See Dixon and Rimmer (2002) for its application in the MONASH model and Dixon and Rimmer (2005) for its
application in the USAGE model.

43 This is explained in more details in Appendix A
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At the beginning of each time period, the twist formulas can be applied to the relevant bundles.
For the renewable bundle, this implies a twist of:

λren ,t = λren ,t−n

[

rt−n +
1− rt−n

(1 + tw)n

]1/σ

For the non-renewable bundle, the twist is expressed as:

λcnv ,t = λcnv ,t−n [rt−n (1 + tw )n + (1− rt−n)]
1/σ

where cnv covers all non-renewable activities. The variable r is the lagged volume share for renew-
ables where rt is equal to r0 for the first year and equal to r for the final year (of implementation
of the twist).

If the twists operate in the absence of price shifts, the volume shares can be updated with the
following formula:

rt = rt−n

[

λren ,t−n

λren ,t

]σ

All of the calculations can occur prior to the simulation using base-year data only.
The second method imposes an exogenous shift in the preference parameters based on ’antici-

pated’ shares if the technologies were available at the same cost. In the case of new technologies,
these are typically introduced with very low shares, say 10−6, with the conventional share therefore
close to 1. We may expect these shares to evolve to something like 60 percent for the conventional
and 40 percent for the new technology were these to have identical costs at some point in the future.
These shifts can be either phased in over a time period or simply imposed at some point in the
future. The following formulas are used for the phase-in method:







αc
t = αc

t0 + (αc
tgt − αc

t0)
t− t0
T − t0

if t ≤ T

αc
t = αc

tgt if tgtT

and

αn
t = 1− αc

t

where αc and αn represent respectively the share of the conventional technology and the new
technology, αc

tgt is the target level of the share for the conventional technology, t0 is the first year
of the phase-in and T is the final year of the phase-in. Note that it could be necessary to ’phase-in’
the phase-in for any given time period if the shock proves numerically difficult. In this case, the
phase-in can be done iteratively with the following formula:

αc
i,t = αc

t−n + n

(

i− 1

m

)

αc
tgt − αc

t0

T − t0

where i iterates between 1 and m + 1. For i equal to 1, the conventional share is equal to the
previous period’s share. For i equal to m+1, the conventional share is equal to the targeted share
for period t. If m is equal to n, i.e. m is equal to the time step, the formula simplifies to:

αc
i,t = αc

t−n + (i− 1)
αc
tgt − αc

t0

T − t0

54



3.10.4 Introducing cost curves

Changes in costs in the normal functioning of the model depend on changes in input prices and
the standard assumptions regarding technology change. This section explains how to introduce an
acceleration in cost reduction coming from some exogenous phenomenon such as learning by doing.
The basic idea is to start from an initial price, say P0, and to reduce costs over time, albeit with
a lower limit given by PMIN . There also exists a target price for year T , given by PT , that must
be greater than PMIN . Let α represent the ratio of the final price, PT , relative to the base year
price, P0, i.e.:

PT = αP0

and let γ represent the ratio of the minimum price, PMIN , relative to the initial price, i.e.:

PMIN = γP0

where α > γ. Two functional forms are introduced to represent the cost curve—the hyperbola and
the logistic functions. The hyperbola takes the following form:

Pt = PMIN + χt−β

The logistic function takes the form:

Pt =
PMIN

1 + χe−βt

Calibration of the parameters for the hyperbola function involve the following expressions:

β =

ln

(

α− γ

1− γ

)

ln

(

t0
T

) χ = P0 (1− γ)

where we define t0 to start with 1.44 In the case of the logistic function, the calibration formulas
are:

β = −
1

T
ln

(

α− γ

α (1− γ)

)

χ = γ − 1

where we define t0 to start with 0.45 Figure 3.13 depicts the shapes of the two cost curves for the
same initial and end points and price limit. From the shape of the curves it is clear that costs
drop sharply in the initial years using the hyperbola specification. The drop is more gradual (and
constant in percentage terms) for the logistic function.

The adjustment to the cost curve is made on total factor productivity (TFP) for the relevant
activity. The aggregate cost is given by the following formula:

Pt =
1

λt
F (Pi,t)

44 If the first year is 2011, t is then defined as t−2010. If the final year is 2050, then T is equal to 2050−(2011−1) =
40.

45 If the first year is 2011, t is then defined as t−2011. If the final year is 2050, then T is equal to 2050−2011 = 39.
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Figure 3.13: Example of cost curves
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where F is the cost function and depends on the prices of the various inputs given by Pi. In most
cases, the cost function will be the dual price expression of the CES function.46 TFP is assumed
to behave according to the following expression:

λt = (1 + πt)
n λt−n

Assuming that input prices are invariant, the growth in TFP must be equal to the following
expression:

πt =

(

Pt−n

Pt

)1/n

− 1

We can introduce the formulas for the two cost curves to derive expressions for π. For the
hyperbola, we have:

πt =

(

PMIN + χ(t− n)−β

PMIN + χt−β

)1/n

− 1 ⇐⇒

(

γ + (1− γ)(t− n)−β

γ + (1− γ)t−β

)1/n

− 1

For the logistic function, the expression for π is given by:

πt =

(

eβt + χ

eβt + χeβn

)1/n

− 1

Both changes in preferences and introduction of the cost curves can be implemented to change
the share of any technology in a demand bundle. The latter operates directly on the preference
shares of the buyer. The former operates on the perceived cost of the technology. These are
formulated independently of the actual cost changes that arise from the endogenous changes in
input prices.

46 In most cases λ is initialized at 1 and is held constant. Technology is introduced as labor-augmenting technical
change and with an exogenous improvement in energy efficiency.
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3.11 Emissions, climate and impact modules

The module’s sequence is as follows. First total emissions are derived. The current version of
the model includes four greenhouse gases—carbon dioxide (CO2), methane (CH4), nitrous oxide
(N2O) and the fluoridated gases as an aggregate (F-gases). Though most of the emissions are
linked to intermediate and final demand, i.e. the consumption of some emitting good or service,
in production some may also be linked to capital (e.g. cattle stock in the case of methane), land
(in the case of methane and nitrous oxide emissions in agriculture) and/or aggregate output (e.g.
municipal waste-base methane emissions). The emissions of greenhouse gases lead to atmospheric
concentrations—emissions directly add to the atmosphere, but concentrations in the atmosphere
also interact with the ocean and land, creating a dynamic process that would continue even in
the absence of emissions. The atmospheric concentration has an impact on radiative forcing, i.e.
how much of the sun’s energy is reflected back to space. Finally, there is a set of equations that
links radiative forcing to temperature global mean temperature change. The final phase of the
module links changes in the average mean temperature to economic impacts that feed back into
production and demand thereby closing the loop between economic activities, climate, back to
economic activities.

The first emissions equation, equation (C-1), determines the level of emissions, EMI , of type em
for each unit of consumption of commodity i by agent aa, where aa covers all production activities
and final demand accounts. It is simply a fixed coefficient with respect to the demand level.
The emissions rate, ρ, can be adjusted in the baseline by the factor χ to allow for autonomous
improvements in the emission rates.47 Equation (C-2) captures emissions linked to the use of
factors of production such as capital and/or land. Equation (C-3) are emissions linked to generic
production activities and not to a specific technology, i.e. they are simply output based emissions.
The aggregate emission by region (or country r), EMITot , is defined in equation (C-4) and is the
double sum over all agents and sources (consumption, factor use and production level), with the
possibility of an additional exogenous level of emissions, EMIOth. The level of global emissions,
EMIGbl , is the summation across all countries and regions, with an additional exogenous component
not accounted for in the regional models—see equation (C-5).

EMI r,em,i,aa = χe
emρr,em,i,aaXAr,i,aa (C-1)

EMI r,em,fp,a = χe
emρr,em,fp,aXF r,fp,a (C-2)

EMI r,em,Total ,a = χe
emρr,em,Total ,aXPr,a (C-3)

EMITotr,em =
∑

aa

∑

is

EMI r,em,is,aa + EMIOthr,em (C-4)

EMIGblem =
∑

r

EMITotr,em + EMIOthGblem (C-5)

3.11.1 Emission taxes, caps and trade

There are a number of different potential regimes to limit carbon emissions. The simplest is simply
to impose a carbon tax, i.e. set the variable τ emi to some value (measured as dollars in base year

47 This has only been used to calibrate the emissions rate of non-CO2 greenhouse gases.
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prices per unit of emitted C). Emission caps can be set on either a single region (or country) basis,
with a differentiated carbon tax across regions/countries, or on a region-wide basis with a uniform
carbon tax. Quota regions are indexed by rq and can be assigned one or more countries. Examples of
cap and cap and trade scenarios are provided in Appendix G. Equation (C-6) implements emissions
caps for each coalition of regions subject to a cap (potentially just a single country). The sum of
emissions across all regions belong to region rq is capped to EMICap (the shifter is explained below).
Equation (C-6) determines the regional emissions tax, τ emiR. Equation (C-7) is an accounting
identity that equates the country/region tax, τ emi , to the region-wide emissions tax. The regional
carbon tax is normally equated to the coalition carbon tax, i.e. by default, χct is equal to 1
and βct is equal to 0. It is possible to provide either multiplicative and/or additive weights to
the equilibrium coalition carbon tax for specific distributional purposes. One such example is to
target global emissions, i.e. a coalition of all regions, but where specific regions are not part of the
formal coalition, in which case χct would be set to zero for regions not part of the coalition. The
weights could also constitute a ’desired’ carbon tax across different coalitions (in terms of dollars
per ton of carbon) and then the variable τ emiR would have an initial value of 1 and either adjust
proportionately or additively subject to the overall cap.

∑

r∈rq

EMITotr,em = χCap
em EMICaprq ,em (C-6)

τ emi
r,em = χct

r,emτ
emiR
rq ,em + βctr,em for r ∈ rq (C-7)

QuotaY emi
r,em = τ emi

r,em

[

EMIQuotar,em − EMITotr,em
]

if Cap & Trade is active (C-8)

The shifter in equation (C-6) allows for additional targeting, for example a cap on global
emissions. Say for example one wants to cap global emissions by 20 percent but only impose a
cap on Annex I emissions. There is some potential leakage from the cap on Annex I countries—
with non-Annex I countries increasing their emissions—because the world price of fossil fuels may
decline and because they increase their production of carbon intensive goods for export to the
now less competitive Annex I markets. The cap on Annex I countries can then be thought of as
setting the burden shares across Annex I countries and the shifter, χCap , in equation (C-6) is then
endogenous to meet the overall objective, for example capping global emissions.

Equation (C-8) determines the value of the trade in emissions quota when country/region spe-
cific quotas, EMIQuota, are allocated. The value of the quota is the difference between the quota
and actual emissions, EMITot , valued at the emissions tax level. Currently, it is assumed that the
quota rents are recycled back to the government.

3.11.2 Concentration, forcing and temperature

The current version of Envisage includes a highly simplified climate module that is largely inspired
by the climate module in the MERGE model.48 It replaces the original climate module that was
based on Nordhaus’ DICE 2007 model49 because the latter has a CO2-only focus and Envisage
requires a module that can handle other greenhouse gases. We may eventually also assess the
implementation of the PAGE09 climate module that has the added advantage of providing spatially
distinct temperature change in part linked to regional differences in latitude.50

48 As described in Manne, Mendelsohn, and Richels (1995) and implemented in the GAMS version of MERGE.
49 Nordhaus (2008), also described in greater detail in Appendix F.
50 Hope (2010).
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Greenhouse gases are treated differently in their impacts on temperature. Carbon emissions
are released into the atmosphere that is divided into five boxes, Box , indexed by b. New emissions
are released into the five boxes, equation (C-9), where the fraction parameter, ϕb, sums to 1.51

The level of carbon in each of the boxes decays over time at the rate δd (that is box-specific).
Equation (C-10) then determines the total concentration of atmospheric carbon (or the stock) in
gtC, Conc, summing over all of the boxes and added to the pre-industrial concentration. For the
other greenhouse gases, indexed by xghg , the atmospheric concentration is equal to the previous
period’s concentration with a decay parameter δx, to which is added new emissions, equation (C-11).
The total concentration is the sum of the transient concentration, Conct, to which is added some
equilibrium stock, equation (C-12).

Box b,t = δdCO2,bBox b,t−1 + ϕb
bEMIGblCO2,t (C-9)

ConcCO2,t =
∑

b

Box b,t + PICCO2 (C-10)

Conctxghg ,t = δxxghg ,tConc
t
xghg ,t−1 + EMIGblxghg ,t (C-11)

Concxghg ,t = Conctxghg ,t + EqConcxghg ,t (C-12)

The radiative forcing impact, RF , of carbon concentration is a logarithmic function of the con-
centration level where ρf is a critical parameter that determines the climate sensitivity—typically
measured as the radiative forcing impact of a doubling of CO2 concentration relative to the pre-
industrial level, equation (C-13). The radiative forcing impacts of the other greenhouse gases is
normally captured by a power equation in the difference in concentration (from base levels) where
the power is either the square root, or linear, equation (C-14). The concentrations measured in
Envisage are in gtCeq and are converted back to millions of tons using the global warming poten-
tial conversion factor, GWP . The ζ parameter captures atmospheric chemical interaction effects
across the different greenhouse gases.

RFCO2,t = ρfCO2
ln

(

ConcCO2,t

ConcCO2,0

)

(C-13)

RF xghg ,t = ζfxghgρ
f
xghg

[

(

χxghgConcxghg ,t

GWPxghg

)ωf
xghg

−

(

χxghgConcxghg ,0

GWPxghg

)ωf
xghg

]

(C-14)

The actualized mean global surface temperature lags behind the potential temperature change
as it takes time for atmosphere and ocean temperature transfer. Equation (C-15) captures the po-
tential temperature impact, Tempeq , of the changes in radiative forcing which is a linear function of
the aggregate change in radiative forcing. The actual change in temperature, Temp, is a weighted
average of the previous temperature change and the potential temperature—with potential adjust-
ments due to exogenous cooling and radiative forcing (e.g. sulfates), equation (C-16).

Temp
eq
t = ρt



RF 0 +
∑

ghg

RF ghg ,t



 (C-15)

Tempt =
(

1− λt
)

Tempt−1 + λtTemp
eq
t−1 − ρt

(

Cool t − Cool 0 + RFX
t

)

(C-16)
51 More details on the underlying theory, parameterization, and handling of the multi-step time periods is provided

in Appendix F.
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3.11.3 Climate change economic impacts

The incorporation of climate-related impacts in models of climate change has largely been rel-
egated to highly aggregate economic models (Nordhaus (1994), Nordhaus and Boyer (2000) and
Nordhaus (2008), Hope (2006)) using a macro damage function that link changes in temperature
to a percentage impact on productivity—normally with an assumption of non-linearity. Hope’s
damages were initially split into three distinct impacts—macroeconomic, non economic (such as
eco-systems), and a third damage linked to a sudden discontinuity that could happen after a given
temperature threshold. Hope 2010 has added a fourth channel that splits the impact of sea level rise
from the macroeconomic damage function. Nordhaus (2010) has similarly split his macroeconomic
damage function into two components with sea level rise split from the rest of the impacts.52 The
FUND model (Anthoff and Tol (2008)) is also a macro model, but they have vastly extended the
impact side to include agriculture, forestry, water resources, energy consumption, sea level rise,
eco-systems, human health and extreme weather. The initial version of Envisage only incorpo-
rated agricultural damages—calibrated to estimates in Cline (2007), but this limited impact has
been superseded by a new and more complete set of impact estimates and described below.53

Impacts are based on a 2-dimensional table of impact sources and impact destinations. The
impact sources are listed in table (3.3).54

Table 3.3: Sources of climate change impacts

Set Description

sea Sea level rise

agr Agricultural productivity

wat Water availability

onj On the job (labor) productivity

tou Tourism

hhe Human health

end Energy demand

Table 3.4 describes the destinations of the climate change impacts.
The bulk of the impacts are assumed to be linear with respect to temperature change and are

summarized by equation (C-17), where ddam is the specific damage function by source and des-
tination. It is implemented as a deviation from the no-damage situation, where ddam takes the
value of 1 in the absence of climate change. A quadratic damage function is used in the case of
agriculture—affecting multi-factor productivity, as depicted in equation (C-18). The following set
of equations implements the damages directly on the relevant model variables. Equation (C-19)
implements the (quadratic) damage on the top-level productivity parameter in the crop sectors,
i.e. it is a uniform shift in the production possibilities frontier across all inputs. It enters in equa-
tions (P-1) through (P-3).55 The next set of four equations determines the impacts on the factors

52 The critical part of sea level rise is that the lagged structure of temperature exchange between the atmosphere
and the sea is unusually long so that even if atmospheric temperature rise is reduced relatively rapidly, the
impact on sea level rise would take centuries to dissipate.

53 Much of the remainder of this section is based on Roson (2009).
54 At the moment, the human health component only reflects the direct effect on labor productivity, and not the

increased demand for health services.
55 The parameters of the damage function are region specific and reflect to some extent the base year structure of
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Table 3.4: Destinations of climate change impacts

Set Description

lp Labor productivity (or stock)

kp Capital productivity (or stock)

tp Land productivity (or stock)

mp Multi-factor productivity

hc Household consumption of energy

hcser Household consumption of market services

incab Income from abroad

of production in efficiency units. Equations (C-20) through (C-22) determine the cumulative im-
pact on respectively labor, land and capital. The standard productivity factors, λf , are determined
in the dynamics module, and the climate-impact adjusted parameters, λgf , enter the production
functions. Equation (C-23) is a simple identity as, for the moment, it is assumed that climate
change does not have an impact on the availability of natural resources (i.e. fossil fuels).

ddamr,src,dst ,t = 1 + χccd
r,src,dst ,t (Tt − T0) for src ∈ Linear (C-17)

ddamr,agr ,mp,t = 1 + αa1
r min (1, Tt − T0) + αa2

r (Tt − T0) + αa3
r (Tt − T0)

2 (C-18)

δcdr,cr = ddamr,agr ,mp (C-19)

λgfr,l,a = λfr,l,a

∏

src

ddamr,src,lp (C-20)

λgfr,LandR,a = λfr,LandR,a

∏

src

ddamr,src,tp (C-21)

λgfr,Captl,a = λfr,Captl ,a

∏

src

ddamr,src,kp (C-22)

λgfr,natrs,a = λfr,natrs,a (C-23)

Equation (C-24) represents the impact on household demand. The impact is assumed to affect
the minimal subsistence bundle as represented by the θ parameter. The impact parameter is
calibrated to the impact on overall consumption, hence the impact on the subsistence level is
scaled for the share of the subsistence level in the overall level of consumption (per capita). Finally,
equation (C-25) represents the impact on tourism revenues, iit . This is a linear function of the
temperature change, where iit0 represents base year tourism revenues. Tourism revenues accrue

agricultural production, however, the damage as currently formulated applies uniformly across all crop sectors.
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to households and this requires a change to equation (Y-11).56 Parametrization of the damage
functions is described in Appendix H.

θghr,k,h = θhr,k,h



1 +

(

ddamr,end,hcsign
(

θhr,k,h

)

− 1
)

θhr,k,h/
(

HX r,k,h,0/Popr,h,0

)



 (C-24)

iitr,h = χiit
r,hiitr,0 (Tt − T0) (C-25)

56 Similar to all variables that deal with households, the income is allocated across households using the χiit

allocation vector—but for the moment, Envisage has only a single representative household and thus the
parameter has unit value.
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Appendix A

The CES and CET functions

This appendix describes in full detail the two functional forms most widely used in CGE models-
the constant-elasticity-of-substitution (CES) and constant-elasticity-of-transformation (CET) func-
tions. CES functions are widely used in demand functions where substitutability across different
products and/or factors is needed and where the main objective is to minimize cost. CET functions
are broadly used to determine supply functions across different markets where the main objective is
to maximize revenues. The two are very similar in many ways and the algebraic derivations below
will be more detailed for the CES function.

A.1 The CES function

A.1.1 Basic formulas

In production, the CES function is used to select an optimal combination of inputs (either goods
and/or factors) subject to a CES production function. In consumer demand, the CES is used as a
utility (or sub-utility) or preference function. In either case, the purpose is to minimize the cost of
purchasing the ’inputs’ subject to the production or utility function. In generic terms the system
takes the following form:

min
Xi

∑

i

PiXi

subject to the constraint:

V = A

[

∑

i

ai(λiXi)
ρ

]1/ρ

The objective function represents aggregate expenditure. The constraint expression will be
referred to as the CES primal function. The parameter A is an aggregate shifter that can be used
to shift the overall production function (or utility function). Each input, Xi, is multiplied by an
input-specific shifter, λi, that can be used to implement input-specific productivity increases (for
example biased technological change), or specific changes in consumer preferences. The (primal)
share coefficients, ai, are typically calibrated to some base year data and held fixed. The CES
exponent, ρ, is linked to the curvature of the CES function (and will be explained further below).
For given component prices, Pi, and a given level of production or utility V , solving the optimization
program above will yield optimal demand functions for the inputs, Xi.

The Lagrangian can be set up as:
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L =
∑

i

PiXi + Λ



V −A

[

∑

i

ai(λiXi)
ρ

]1/ρ




Taking the partial derivative with respect to Xi and the Lagrange multiplier Λ yields the
following system of equations:

Pi = Λaiλ
ρ
iX

ρ−1
i A

[

∑

i

ai(λiXi)
ρ

](1−ρ)/ρ

= ΛaiA
ρλρiX

ρ−1
i V 1−ρ

V = A

[

∑

i

ai(ΛiXi)
ρ

]1/ρ

Taking the first expression, it can be multiplied by Xi, and then summed. This of course is
equal to the value of the bundle, i.e. P.V , where P is the aggregate price:

P.V =
∑

i

PiXi = ΛV 1−ρAρ
∑

i

aiλ
ρ
iX

ρ
i = ΛV 1−ρV ρ = ΛV

This shows that Λ, the Lagrange multiplier is the same as the aggregate price, P . We can
re-arrange expression above to get an expression for optimal input demand, where Λ is replaced by
P :

Xi = a
1/(1−ρ)
i Aρ/(1−ρ)

(

P

Pi

)1/(1−ρ)

λ
ρ/(1−ρ)
i V

We finally end up with the following expression, where the CES primal exponent, ρ, is replaced
by the so-called CES elasticity of substitution, σ:

Xi = αi(Aλi)
σ−1

(

P

Pi

)σ

V (A.1-1)

where we made the following substitutions:

σ =
1

1− ρ
⇔ ρ =

σ − 1

σ
⇔

ρ

1− ρ
= σ − 1 ⇔ ρ.σ = σ − 1

and
αi = a

1/(1−ρ)
i = aσi ⇔ ai = α

1/σ
i

Abstracting from the technology parameters, the demand equation implies that demand for
’input’ Xi is a (volume) share of total demand V . The share, with equal prices is simply equal to
αi. With a positive elasticity of substitution, the share is sensitive to the ratio of prices relative
to the aggregate price index. Since the component price is in the denominator, the demand for
that component declines if its price rises relative to the average and vice versa if its price declines
vis-à-vis the average price. The α parameters will be referred to as the CES dual share parameters
(for reasons described below), and the a parameters are the primal CES share parameters. Notice
that expression (A.1-1) simplifies if it is expressed in terms of efficiency inputs, Xe and efficiency
prices, P e:

Xe
i = αiA

σ−1

(

P

P e
i

)σ

V
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where

Xe
i = λiXi

and

P e
i =

Pi

λi

The aggregate price P can be determined using two expressions. The first is the zero profit
condition:

P =

∑

i
PiXi

V

The other is by inserting the optimal demand relation Xi (equation A.1-1) in the zero profit
condition :

P.V =
∑

i

PiXi = Aσ−1
∑

i

Piαi

(

P

Pi

)σ

λσ−1
i V = P σAσ−1V

∑

i

αi

(

Pi

λi

)1−σ

The V ’s cancel out, and the aggregate price can then be expressed by the following formula:

P =
1

A

[

∑

i

αi

(

Pi

λi

)1−σ
]1/(1−σ)

=
1

A

[

∑

i

αi (P
e
i )

1−σ

]1/(1−σ)

(A.1-2)

This is sometimes referred to as the dual price expression. It has virtually the same functional
form as the CES primal, which is a CES aggregation of the input volumes using the primal share
parameters as weights. The CES dual price formula is a CES aggregation of the input prices using
the CES dual share parameters as weights and a different exponent. In a CGE model, the zero-
profit condition or the dual price formula can be used interchangeably (with the proviso that the
substitution elasticity differs from 1).1 There is a simple formula for the budget shares given by:

si =
PiXi

P.V
= αi(Aλi)

σ−1

(

P

Pi

)σ

V

(

Pi

P

)

1

V
= αi(Aλi)

σ−1

(

P

Pi

)σ−1

(A.1-3)

Notice that this expression for the budget shares is only a function of prices. With the technology
parameters set to 1, this simplifies further to:

si = αi

(

P

Pi

)σ−1

It turns out that the parameter σ measures the elasticity of substitution for the CES function
and is constant over the entire domain. The elasticity of substitution is an indication of the
curvature of an isoquant, see Varian (1992), i.e. it measures the rate of change of the ratio of
inputs (in a 2-input case), relative to the change in their relative prices. For example, if the CES
combines capital and labor to form output, a large substitution elasticity suggests that the factor
proportions will change rapidly as one of the inputs becomes cheaper relative to the other. There
are two limiting cases of interest. If the substitution elasticity is zero, then there is no substitution
across inputs and the optimal choice is to use them in fixed proportion. At the other extreme, if

1 We shall see below that when the substitution elasticity is 1, both primal and dual expressions take a different
functional form.
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the substitution elasticity is infinite, this is equivalent to saying the inputs are identical, and in this
case, in equilibrium, the two inputs would have the same price. This could potentially be the case
for electricity production. If there is a regional or national buyer of electricity, the buyer is most
likely indifferent about how the electricity is produced and thus will purchase from the lowest cost
producer (a perhaps somewhat simplified view of electricity markets.) This implies that the cost
of the electricity inputs, from all sources (e.g. thermal, nuclear, etc.) would be (nearly) identical.

The elasticity of substitution across inputs is defined by the following formula:

σ =
∂
(

Xi
Xj

)

∂
(

Pi
Pj

)

(

Pi
Pj

)

(

Xi
Xj

)

The ratio of the optimal inputs using expression (A.1-1) is:

αi

αj

(

Pi

Pj

)−σ(λi
λj

)σ−1

Taking the partial derivative of the expression with respect to the ratio Pi/Pj and multiplying
it by the second term of the elasticity of substitution yields the conclusion that the substitution
elasticity is −σ. It is logical that it is negative. If the price of one input increases, say labor,
relative to the other, say capital, producers would substitute away from labor towards capital, i.e.
the ratio of labor to capital would drop as the price of labor increases relative to capital. Varian
(1992) in fact defines the elasticity of substitution in terms of the absolute value of the technical
rate of substitution, that measures the slope of the budget line. Numerically what it represents
is the relative change in the ratios. If σ is 1, for example, and the price of labor increases by 10
percent relative to capital, the labor to capital ratio would decrease by (around) 10 percent.2 The
higher is σ, the more the proportion changes.

A.1.2 Special cases

There are three special cases that require additional derivations due to numerical restrictions on
the primal and dual exponents. A substitution elasticity of 0 is clearly a special case and is referred
to as a Leontief technology. From the dual price formula, it is clear that σ equal to 1 is a special
case and is known as a Cobb-Douglas technology (or utility function). Finally, a value of ρ equal
to 1 corresponds to infinite substitution elasticity and a linear primal aggregation function. This
is also referred to as a case of perfect substitution.

The Leontief case

The first special case is for the so-called Leontief functional form.3 In this case the substitution
elasticity is 0 and corresponds to a value for ρ that is −∞. In this case the optimization program
takes the following form:4

min
Xi

∑

i

PiXi

subject to the constraint:

2 The elasticity is a marginal concept that holds only approximately for large changes.
3 Leontief, winner of the 1973 Nobel prize in Economics, is renowned for his work on input-output tables, much

of which focused on fixed input technologies (!!!! reference).
4 !!!! need a reference
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V = min

(

ai
λiXi

)

The visual implementation has L-shaped isoquants. The Leontief technology constraint or
production/utility function is discontinuous. Fortunately, the optimal demand functions are easy
to implement and are just special cases of expression (A.1-1):

Xi =
αi

λi

V

A

P =
1

A

∑

i

αi

(

Pi

λi

)

Thus the Leontief specification implies that inputs are always in fixed proportion relative to
output and the aggregate price is simply the linear weighted aggregation of the input prices, where
the weights are given by the input-output coefficients, adjusted by changes in efficiency. The
efficiency parameter has a nice intuitive interpretation in this case. Say λ increases by 10 percent,
then demand for the input declines by 10 percent.

The Cobb-Douglas function

Another special case is the so-called Cobb-Douglas function, very frequently used in introductory
text books in microeconomics. The Cobb-Douglas function has a substitution elasticity of 1 im-
plying that ρ is equal to 0. Clearly, this creates a problem for specifying the CES primal function
as well as the CES dual price function. As with the Leontief, the optimal demand conditions are
given by expression (A.1-1), with σ set to 1:

Xi = αi

(

P

Pi

)

V ⇔ si =
PiXi

P.V
= αi

The Cobb-Douglas specification has constant budget shares irrespective of relative prices (and
changes in technology). Another implication of the Cobb-Douglas specification is that the dual
shares must add up to 1 as they are equivalent to the budget shares. By definition, as well, the
primal and dual shares are the same. The Cobb-Douglas primal and dual price functions have the
following expressions:

V = A
∏

i

(λiXi)
αi

P =
1

A

∏

i

(

Pi

αiλi

)αi

Rather than code the Cobb-Douglas function as a special case, many modelers choose to replace
the elasticity of 1 with a value close to 1 such as 1.01. This would have only marginal repercussions
on the results.

Perfect substitution

The third special case is for a substitution elasticity of infinity. In this case ρ takes the value
of 1 and the primal function is a straight linear aggregation of the inputs. The optimal demand
conditions cannot be used in the case of an infinite substitution elasticity. In its stead, the optimal
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demand condition is replaced with the law-of-one-price, adjusted by efficiency differentials, and the
zero profit condition is replaced with the CES primal function, i.e. the linear weighted aggregation
of the inputs:

Pi

αiλi
= P

V =
∑

i

αiλiXi

The aggregation function can be replaced by the zero profit condition:5

P.V =
∑

i

PiXi

A.1.3 Calibration of the CES function

Calibration typically involves inverting functional forms to evaluate the value of a parameter given
initial values for variables. Prices and volumes, Pi, Xi, V and P , are normally initialized to a
given database or SAM. This may or may not include actual price/volume splits. If not, prices
will typically be initialized at unit value—potentially adjusted for a price wedge such as a tax or
a margin. The substitution elasticities are also normally inputs—either derived from econometric
estimation, other data bases or models, or from a literature review. This leaves the parameters λi,
αi and A to calibrate. The technology parameters are normally associated with dynamics, so there
is little reason not to initialize them to unit value as they can be incorporated in the initial share
parameter value without any loss in generality. Thus, the only parameters left to calibrate are the
αi from which it is possible to derive the primal share parameters, ai, if needed. The calibration
formula is derived from the inversion of equation (A.1-1):

αi =

(

Xi

V

)(

Pi

P

)σ

(A.λi)
1−σ =

(

Xi

V

)(

Pi

P

)σ

The right-most term is the most used formula where the technology parameters are explicitly
set to 1.6

A.1.4 Comparative statics

Elasticities

This section will derive some of the key elasticities of the CES function. The first relationship is
the elasticity of the aggregate price with respect to a component price:

∂P

∂Pi

Pi

P
= si =

PiXi

P.V

5 Modelers have the choice of using the primal aggregation function or the revenue function. The latter holds in
all three special cases for the substitution elasticity.

6 In many introductions to CGE models, the calibration formulas explicitly exclude the price term. This is a
dangerous practice that can lead to model bugs that can be hard to detect. It is best to explicitly initialize
prices to 1 and use the correct calibration formula. In fact, one way to test model calibration and specification
is to initialize prices to an arbitrary value and initialize volumes subject to these prices. Simulating a counter-
factual with no shocks should replicate the initial data solution. If not, there is an error in initialization,
calibration and/or specification.
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The elasticity of the aggregate price relative to an input price is equal to the budget share,
irrespective of the substitution elasticity. The matrix of own- and cross-price elasticities, holding
the aggregate volume constant is given by the following formula:

εij =
∂Xi

∂Pj

Pj

Xi
= σ(sj − δij)

where δij is the so-called Kronecker’s delta that takes the value 1 for i equal to j, else it takes the
value 0. Since σ is positive, all components are gross substitutes in the CES.

Formulas in percent differences

It is useful in terms of comparative static analyses to convert the basic equations into percent
differences. It is easy to trace out the impacts of a change in one of the ’exogenous’ variables
on demand and the overall price index. This is also the form of the equations used for models
implemented in GEMPACK such as MONASH-style models.

The following expressions convey expressions (A.1-1) and (A.1-2) into their percent difference
form:

∂Xi

Xi
= Ẋi = V̇ + σ

(

Ṗ − Ṗi

)

− (σ − 1)
(

Ȧ+ λ̇i

)

∂P

P
= Ṗ = −Ȧ+

∑

i

siṖi −
∑

i

siλ̇i = −Ȧ+
∑

i

si

(

Ṗi − λ̇i

)

Thus the percent change in the unit cost, P , for a change in the input price, Pi, all else equal, is
(approximately) the value share of component i—as already noted above.

A.1.5 Growth Accounting

Use can be made of the linearization above to derive the linearized growth accounting formula:

∆V

V
=

∆A

A
+
∑

i

si
∆xi
xi

+
∑

i

si
∆λi
λi

A.1.6 Parameter twists

The basic analytics

This final section on the CES describes how to adjust the share parameters in a dynamic scenario
under a specific assumption—this is called the twist adjustment and is a core feature of the dynamic
MONASH model, see Dixon and Rimmer (2002). The basic idea is to alter the share parameter, in
a two-component CES, to target a given change in the ratio of the two components, however, with
neutral impacts on the aggregate cost. For example, the target may be a cost-neutral increase in
the capital/labor ratio by x%, or an increase in the import to domestic ratio of y%.

The ratio of the two components is given by the following expression using equation (A.1-1) as
the starting point:

R =
α1λ

σ−1
1 P2

σ

α2λ
σ−1
2 P1

σ

The idea is to move the initial ratio, Rt−1 to Rt by tw percent.
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Rt

Rt−1
= (1 + twt)

Using the formulas above, we have:

Rt

Rt−1
= (1 + twt) =

(

λ1,t

λ1,t−1

)σ−1

(

λ2,t

λ2,t−1

)σ−1 =
(1 + π1,t)

σ−1

(1 + π2,t)
σ−1

The π variables represent the growth (either positive or negative) that will be applied to the
technology parameters under the assumption of cost-neutral technological change. We can start
with the dual cost function for year t, but with year t− 1 prices:

P 1−σ
t−1 = α1

(

P1,t−1

λ1,t

)1−σ
+ α2

(

P2,t−1

λ2,t

)1−σ

= α1(1 + π1,t)
σ−1
(

P1,t−1

λ1,t

)1−σ
+ α2(1 + π2,t)

σ−1
(

P2,t−1

λ2,t

)1−σ

Recall that the share equation is given by:

si,t−1 = αiλ
σ−1
i,t−1

(

Pt

Pi,t−1

)σ−1

Dividing through the expression above by P 1−σ
t and inserting the share expressions for year t− 1,

we end up with:

1 = s1,t−1(1 + π1,t)
σ−1 + s2,t−1(1 + π2,t)

σ−1

Solving in terms of π1, we have:

(1 + π1,t)
σ−1 =

1− s2,t−1(1 + π2,t)
σ−1

s1,t−1

and this can be inserted into the twist target formula to get:

1 + twt =
1− s2,t−1(1 + π2,t)

σ−1

s1,t−1(1 + π2,t)
σ−1 =

(1 + π2,t)
1−σ − s2,t−1

s1,t−1

Finally, π2 can be isolated to yield:

1 + π2,t = [s1,t−1(1 + twt) + s2,t−1]
1/(1−σ) = [1 + s1,t−1twt]

1/(1−σ)

We can re-insert this into the expression above to derive an expression for π1:

1 + π1,t =

[

1 + s1,t−1twt

1 + twt

]1/(1−σ)

Finally, the productivity update formulas that incorporate the twist adjustment take the form:

λ1,t = (1 + π1,t)λ1,t−1 =

[

1 + s1,t−1twt

1 + twt

]1/(1−σ)

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 = [1 + s1,t−1twt]
1/(1−σ)λ2,t−1
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It is possible to generalize these formulas by partitioning the set of CES components into two
sets—a set indexed by 1 that is the target set, and a set indexed by 2 that is the complement. For
example, think of a set of electricity technologies that includes conventional and advanced. It is
possible then to provide the same twist to all of the new technologies relative to the conventional
technologies. The only change in the formulas above is that the share variable for the single
component is replaced by the sum of the shares for the bundle of components:

λ1,t = (1 + π1,t)λ1,t−1 =

[

1 + twt

∑

i∈1 si,t−1

1 + twt

]1/(1−σ)

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 =

[

1 + twt

∑

i∈1

si,t−1

]1/(1−σ)

λ2,t−1

Converting to percent differences

The π factors reflect a percentage change in the relevant productivity factors for each of the com-
ponents. Using a Taylor series approximation, the formulas above can be converted to a linear
equation that is used by the Monash-style models. For the first component, we have:

π1 = F (tw) =

[

1 + s1tw

1 + tw

]1/(1−σ)

− 1 ≈ F (0) + tw.F ′(0) = −tw
1− s1
1− σ

For the second component we have:

π2 = F (tw) = [1 + s1tw]
1/(1−σ) − 1 ≈ F (0) + tw.F ′(0) = tw

s1
1− σ

Note that in the Monash models, the signs are reversed because the productivity factors divide the
volume components whereas in the formulation above the productivity factors are multiplicative.

Examples of twisting the share parameters

We demonstrate these concepts with two examples. The first is a CES production function of
capital and labor, where the labor share is 60% and the capital/labor substitution elasticity (i.e.
σ) is set to 0.9. Prices are initialized at 1, therefore the original capital/labor ratio is 2/3. The
target is to raise the capital/labor ratio 10% assuming cost neutrality. Table A.1 shows the key
results. Labor efficiency would increase by 48% and capital efficiency would decline by 43%.

Table A.1: Example of capital/labor twist

Labor Capital Capital/labor ratio

Initial 60.0 40.0 0.6667
After twist 57.7 42.3 0.7333
Percent change -3.8 5.8 10.0
Growth factor 0.48 -0.43

The second example comes from trade and the Armington assumption. Assume an 80/20 split
between domestic goods and imports in value and volume implying a ratio of imports to demand
of domestic goods of 0.25. Table A.2 shows the twist parameters needed to achieve an increase in
this ratio of 10 percent with an Armington elasticity of 2. The preference parameter for imports
increases by nearly 8 percent, while that for domestic goods decreases by 2 percent.
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Table A.2: Example of Armington import/domestic twist

Domestic Import Import/domestic ratio

Initial 80.0 20.0 0.250
After twist 78.4 21.6 0.275
Percent change -2.0 7.8 10.0
Growth factor -0.02 0.08

A.1.7 Summary

In summary, the CES functional form is often used as a production (or sub-production) function
that combines two or more inputs to form output (or an intermediate composite bundle), under the
assumption of cost minimization. It is also frequently used to maximize utility (or sub-utility) over
a set of two or more goods, again with the assumption of cost minimization. Table A.3 highlights
the two main expressions to emerge from the optimization—the derived demand functions, Xi, and
the CES dual price expression, P . The top row shows the expression with all technology parameters
initialized at 1, and the bottom row the most generic version.

Table A.3: Key equations for CES implementation

Demand Aggregate price

Basic Xi = αiV

(

P

Pi

)σ

P =

[

∑

i

αiP
1−σ
i

] 1
1−σ

with full technology Xi = αi(Aλi)
σ−1V

(

P

Pi

)σ

P =
1

A

[

∑

i

αi

(

P

λi

)1−σ
] 1

1−σ

A.2 The CET Function

A.2.1 The basic formulation

This section describes the constant-elasticity-of-transformation (CET) function. The CET function
is often used to describe a transformation frontier between two or more outputs. For example, a
producer may produce two or more products and decides how much of each to produce based on
market conditions, i.e. relative prices. The CET is often used to represent a producer’s decision on
the allocation of output between domestic and foreign markets. Another example is land supply,
where land will be allocated across different uses according to the relative returns. The transfor-
mation elasticity is assumed to be uniform between any pair of outputs and therefore is analogous
to the demand-based CES function described in detail above. The exposition of the CET will be
much more succinct than that of the CES because most of the derivations can be derived in a
similar fashion.

The CET can be setup as a revenue maximization problem, subject to a transformation frontier:

max
Xi

∑

i

PiXi

subject to
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V = A

[

∑

i

gi(λiXi)
v

] 1/v

where V is the aggregate volume (e.g. aggregate supply), Xi are the relevant components (sector-
specific supply), Pi are the corresponding prices, gi are the CET (primal) share parameters, and ν
is the CET exponent. The CET exponent is related to the CET transformation elasticity, ω via
the following relation:

ν =
ω + 1

ω
⇔ ω =

1

ν − 1

The transformation elasticity is assumed to be positive. Solution of this maximization problem
leads to the following first order conditions:

Xi = γi(Aλi)
−1−ω

(

Pi

P

)ω

V (A.1-4)

and

P =
1

A

[

∑

i

γi

(

Pi

λi

)1+ω
] 1/(1+ω)

(A.1-5)

where the γi parameters are related to the primal share parameters, gi, by the following formula:

γi = g−ω
i ⇔ gi =

(

1

γi

)1/ω

From expression A.1-4, and ignoring the technology parameters for the moment, the clear
difference with the CES expression for optimal demand (equation A.1-1) is that the component
price is in the numerator and the aggregate price in the denominator. This is intuitively logical.
If the supply price to a market goes up relative to the average market price, one would anticipate
that supply would increase to that market. The greater the transformation elasticity the greater
are the market shifts.

Calibration is similar to the CES case. Prices and volumes are initialized using base year data.
Equation ( A.1-4) can then be inverted to calculate the share parameters, γi, with typically the
technology parameters initialized to the value 1. In most implementations, there is no need to carry
around the primal share parameters, nor the primal exponent.

The main interesting case for the CET is the case of perfect transformation, i.e. the transfor-
mation elasticity is infinity. In this case the CET exponent is 0 and the aggregation function is a
linear weighted aggregation of the components. The standard CET equations are then replaced by
the law-of-one price and the linear aggregation function (or alternatively, the zero profit condition).

Pi

Aλi
= P∀i

A
∑

i

λiXi = X
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A.2.2 Converting to percent differences

It is easier to interpret or decompose the results of a simulation by looking at the CET equations in
percent differences form—that is the standard form for MONASH-style models and implementation
in GEMPACK. The following equations show the equations in percent difference form:

∂Xi

Xi
= Ẋi = V̇ + ω

(

Ṗi − Ṗ
)

− (ω + 1)
(

λ̇i + Ȧ
)

∂P

P
= Ṗ = −Ȧ+

∑

i

siṖi −
∑

i

siλ̇i = −Ȧ+
∑

i

si

(

Ṗi − λ̇i

)

where the variable si is the value share of component i in total revenue:

si =
PiXi

P · V
= γi

(

Pi

A · λi · P

)ω+1

A.3 Modified CES and CET that incorporate additivity

The standard CET supply allocation specification does not preserve physical additivity, i.e. the
sum of the volume components is not necessarily equal to the total volume. There are a number of
alternative specifications that do preserve volume homogeneity, for example the multinomial logit.
One alternative, described below, uses a modified form of the CET preference function. This spec-
ification has been used for labor and land supply allocations (see respectively Dixon and Rimmer
(2006) and Giesecke et al. (2013)).

A.3.1 The CET implementation

The CET alternative involves solving the following optimization:

max
Xi

U =

[

∑

i

gi (λiPiXi)
ν

]1/ν

subject to the constraint:

V =
∑

i

Xi

The variable definitions are similar to above, Xi are the volume components, Pi are the relevant
component prices and V is aggregate volume. The λi parameters are preference parameters. The
CET utility function is not simply a function of the volumes, but explicitly a function of the
preference-adjusted revenues of the individual components. The closed-form solution to the above
system is the following set of equations:

Xi = γiV

(

λiPi

P c

)ω

(A.1-6)

P c =

[

∑

i

γi (λiPi)
ω

]1/ω

(A.1-7)
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Both equations are similar to their standard CET counterparts, but with some differences. First,
P c is a price index, but it is not the average price of the components, i.e. P cX 6=

∑

i PiXi. Second,
this price index is based on ω not 1+ω as in the standard CET dual price expression. The revenue
correct price index is defined by the following formula:

P =

∑

i
γiλ

ω
i P

ω+1
i

∑

i
γiλωi P

ω
i

=

∑

i
γiλ

ω
i P

ω+1
i

(P c)ω
=
∑

i

γiPi

(

λiPi

P c

)ω

=
∑

i

Xi

V
Pi (A.1-8)

The other transformations include:

γi = gi
1+ω

ω =
ν

1− ν
⇐⇒ ν =

ω

1 + ω

It is worth noting that the relation between ω and ν differs from the standard CET relation as
the respective formula is inverted. The implication of this is that ν is bounded below by 0 instead
of ∞, but is otherwise positive over the entire (positive) range of ω. And, in both the standard
and adjusted CET ν converges to 1 as ω converges to ∞. As regards calibration, there is an extra
degree of freedom as the value for utility is not specified. It is easiest to simply set P c to 1 as for
given Pi and λi the calibration of the γ parameters is straightforward:

γi =
Xi

V

(

λiPi

P c

)−ω

If prices and technology or preference parameters are initialized at 1, the calibrated γ parameters
are equal to the initial volume shares.

Converting this to a Monash-style equation in percent differences, the derived supply function
is:

Ẋi = V̇ + ω



Ṗi + λ̇i −

n
∑

j=1

Xj

V

(

Ṗj + λ̇j

)





This equation uses volume shares as weights for cross-price (and cross-preference) effects. In the
standard CET formulation, value shares are used as weights.

The standard specification needs some modifications for two special cases—perfect transforma-
tion and perfect immobility. The case of perfect transformation, i.e. a transformation elasticity of
∞, leads to all prices moving in unison with the aggregate price index. Thus equation (A.1-6) is
replaced with the following expression:

λiPi = P c

where λi is calibrated to the initial price ratios. The price index expression, equation (A.1-7) is
replaced with the volume constraint:

V =
∑

i

Xi

In the model implementation of the adjusted CET, this latter expression can be used in all cases
and can replace equation (A.1-7).
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The case of zero mobility is readily implemented by dropping completely equation (A.1-7) (or
its equivalent, i.e. the volume adding up constraint). With a transformation elasticity of 0, the
price composite index in equation (A.1-6) simply drops out and the volume components are in
strict proportion to the aggregate volume.

A.3.2 The CES implementation

The adjusted CET (and CRETH) functions replace their counterparts for the allocation problem
that preserves additivity. Analogous specifications exist for the CES and CRESH functions that
emulate the implementation of their standard counterparts but also allow for additivity.

The CES alternative involves solving the following optimization:

min
Xi

U =

[

∑

i

ai (λiPiXi)
ρ

]1/ρ

subject to the constraint:

V =
∑

i

Xi

As in the case of the adjusted CET, the adjusted CES utility function is a function of the preference
adjusted cost components. The closed-form solution to the above system is the following set of
equations:

Xi = αiV

(

P c

λiPi

)σ

(A.1-9)

P c =

[

∑

i

αi (λiPi)
−σ

]−1/σ

(A.1-10)

Both equations are similar to their standard CES counterparts, but with some differences. First,
P c is a price index, but it is not the average price of the components, i.e. P cX 6=

∑

i PiXi. Second,
this price index is based on −σ not 1−σ as in the standard CES dual price expression. The revenue
correct price index is defined by the following formula:

P =

∑

i
αiλ

σ
i P

1−σ
i

∑

i
αiλ

σ
i P

σ
i

=

∑

i
αiλ

σ
i P

1−σ
i

(P c)−σ =
∑

i

αiPi

(

λiPi

P c

)−σ

=
∑

i

Xi

V
Pi (A.1-11)

The other transformations include:

αi = ai
1−σ

σ =
ρ

ρ− 1
⇐⇒ ρ =

σ

σ − 1

It is worth noting that the relation between σ and ρ differs from the standard CES relation as the
respective formula is inverted. The implication of this is that ρ is bounded below by 0 instead of
−∞. It decreases towards −∞, as σ increases towards 1, which is a discontinuity point. It decreases
from ∞ towards 1 as σ increases from 1 to ∞.
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It is relatively easy to show that the following simple expression holds for the utility function:

U = P cV (A.1-12)

As regards calibration, there is an extra degree of freedom as the value for utility is not specified.
It is easiest to simply set P c to 1 as for given Pi and λi the calibration of the α parameters is
straightforward:

αi =
Xi

V

(

λiPi

P c

)σ

If prices and technology or preference parameters are initialized at 1, the calibrated α parameters
are equal to the initial volume shares.

Converting this to a Monash-style equation in percent differences, the derived demand function
is:

Ẋi = V̇ − σ



Ṗi + λ̇i −
n
∑

j=1

Xj

V

(

Ṗj + λ̇j

)





This equation uses volume shares as weights for cross-price (and cross-preference) effects. In the
standard CES formulation, value shares are used as weights.

A.3.3 Using twists with the adjusted CES

The ’twist’ idea described for the normal CES can be applied to the adjusted CES. The concept is
somewhat different given the type of optimization problem posed. Rather than change the share
parameters in a given direction with cost neutrality, the idea is to change the share parameters with
utility neutrality. The problem posed, therefore, is to change the ratio of demand for two goods by
a specified amount, while maintaining the same level of utility.

The ratio of the two components is given by the following expression using equation (A.1-9) as
the starting point:

R =
α1λ2P2

σ

α2λ1P1
σ

The idea is to move the initial ratio, Rt−1 to Rt by tw percent.

Rt

Rt−1
= (1 + twt)

while holding U constant. The two expressions above imply that the preference shifters, given by
the π parameters, are linked via the following expression:

1 + π2 = (1 + π1) (1 + tw)1/σ (A.1-13)

Given equation (A.1-12), holding U constant is equivalent to holding the price index, P c, con-
stant as well (for a fixed aggregate volume). Thus we can solve the following equation for the
parameter π1:
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(

P c
t−1

)−σ
= α1 (P1,t−1λ1,t−1)

−σ + α2 (P2,t−1λ2,t−1)
−σ

= α1 (P1,t−1λ1,t−1 (1 + π1,t))
−σ + α2 (P2,t−1λ2,t−1 (1 + π2,t))

−σ

= α1 (P1,t−1λ1,t−1 (1 + π1,t))
−σ + α2

(

P2,t−1λ2,t−1 (1 + π1,t) (1 + tw )1/σ
)−σ

= (P c
t )

−σ

The π variables represent the growth (either positive or negative) that will be applied to the
preference parameters under the assumption of utility-preserving preference shifts. This formula
can be written in terms of the initial volume shares, ri = Xi/V , simplified and re-arranged to
yield:

(1 + π1)
σ = r1 +

r2
1 + tw

and when re-inserted in equation (A.1-13) we get:

(1 + π2)
σ =

(

r1 +
r2

1 + tw

)

(1 + tw)

The final formulas for the two twist parameters only depend on the initial volume shares, the
substitution elasticity and the level of the ’twist’:

π1 =

(

r1 +
r2

1 + tw

)1/σ

− 1 (A.1-14)

π2 = (r1 (1 + tw ) + r2)
1/σ − 1 (A.1-15)

It is possible to generalize these formulas by partitioning the set of CES components into two
sets—a set indexed by 1 that is the target set, and a set indexed by 2 that is the complement. For
example, think of a set of electricity technologies that includes conventional and advanced. It is
possible then to provide the same twist to all of the new technologies relative to the conventional
technologies. The only change in the formulas above is that the volume share variable for the single
component is replaced by the sum of the volume shares for the bundle of components:

λ1,t = (1 + π1,t)λ1,t−1 =

[

∑

i∈1

ri,t−1 +

∑

i∈2 ri,t−1

1 + tw t

]1/σ

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 =

[

∑

i∈1

(1 + tw t) ri,t−1 +
∑

i∈2

ri,t−1

]1/σ

λ2,t−1

Converting to percent differences

The π factors reflect a percentage change in the relevant productivity factors for each of the com-
ponents. Using a Taylor series approximation, the formulas above can be converted to a linear
equation that is used by the Monash-style models. For the first component, we have:

π1 = F (tw) =

[

r1 +
r2

1 + tw

]1/σ

− 1 ≈ F (0) + tw.F ′(0) = −tw
r2
σ

For the second component we have:

π2 = F (tw) = [r1 (1 + tw ) + r2]
1/σ − 1 ≈ F (0) + tw.F ′(0) = tw

r1
σ
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Appendix B

The demand systems

The model contains four different possible demand systems for determining household demand for
goods and services:

CDE or constant differences in elasticities—largely derived from the GTAP model

ELES or extended linear expenditure system

LES or linear expenditure system

AIDADS of an implicitly directly additive demand system, an extension of the LES that
allows for more plausible Engel behavior

The default demand system is the CDE demand system. It is a relatively flexible funtional form
allowing for non-homotheticity. It is not ideal for dynamic scenarios, in the absence of re-calibration
of parameters, as the income elasticities are relatively invariant to changes in per capita income.
The AIDADS has more plausible Engel behavior, but is more difficult to calibrate and has less than
ideal flexibility in terms of cross-price elasticities.

Three of the demand systems (CDE, LES, AIDADS) use a two-tiered structure to first allocate
income between savings and expenditures on goods and services. The ELES integrates the savings
allocation within its specification. All four systems determine the demand for consumer goods that
are different from produced goods. A transition matrix approach is subsequently used to convert
consumer goods into produced goods.

B.1 The CDE demand system

The Constant Difference of Elasticities (CDE) function is a generalization of the CES function, but
it allows for more flexibility in terms of substitution effects across goods and for non-homotheticity.1

The starting point is an implicitly additive indirect utility function (see Hanoch (1975)) from which
we can derive demand using Roy’s identity (and the implicit function theorem).

1 More detailed descriptions of the CDE can be found in Hertel et al. (1991), Surry (1993) and Hertel (1997).
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B.1.1 General form

A dual approach is used to determine the properties of the CDE function. The indirect utility
function is defined implicitly via the following expression:

V (p, u, Y ) =

n
∑

i=1

αiu
eibi

(

pi
y

)bi

≡ 1 (B.2-1)

where p is the vector of commodity prices, u is (per capita) utility and y is per capita income.
Using Roy’s identity and the implicit function theorem2 we can derive demand, x, where v is the
indirect utility function (defined implicitly):

xi = −
∂v

∂pi
/
∂v

∂Y
= −

(

∂V

∂pi
/
∂V

∂u

)

/

(

∂V

∂Y
/
∂V

∂u

)

= −

(

∂V

∂pi
/
∂V

∂Y

)

(B.2-2)

This then leads to the following demand function:

xi =
αibiu

eibi
(

pi
y

)bi−1

∑

j
αjbjuejbj

(

pj
y

)bj
(B.2-3)

Implementation is easier if we define the following variable:

θi = αibiu
eibi

(

pi
y

)bi

(B.2-4)

Then the budget shares can be expressed as:

si =
θi

∑

j θj
(B.2-5)

and the demand expression is:

xi =
si
pi
y (B.2-6)

Implementation also requires evaluating u. This can be done by implementing equation (B.2-1)
and inserting the expression for θ:

n
∑

i=1

θi
bi

≡ 1 (B.2-7)

B.1.2 Elasticities

In order to calibrate the CDE system, it is necessary to derive the demand and income elasticities
of the CDE. The algebra is tedious, but straightforward.

2 See Varian (1992), p. 109.
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The own-price elasticity is given by the following:

εi =
∂xi
∂pi

pi
xi

=

si





∑

j

sjejbj − eibi





∑

j

sjbj
+ bi (1− si)− 1 (B.2-8)

In deriving the elasticity, we make use of the following formula that defines the elasticity of utility
with respect to price (and again makes use of the implicit function theorem):

∂u

∂pi

pi
u

= −
pi
u

(

∂V

∂pi

)

/

(

∂V

∂u

)

= −
si

∑

j
sjej

(B.2-9)

The price elasticity of utility is approximately the value share of the respective demand component
as long as the weighted sum of the expansion parameters, e, is close to unity. The value (or budget)
share is defined in the next equation:

si =
pixi
y

(B.2-10)

Letting σi = 1− bi (or bi = 1− σi), we can also write:

εi = si






σi −

ei(1− σi)
∑

j
sjej

−

∑

j
sjejσj

∑

j
sjej






− σi (B.2-11)

With σ uniform, we also have:

εi = −
siei(1 − σ)
∑

j
sjej

− σ (B.2-12)

With both e and σ uniform, the formula simplifies to:

εi = −si(1− σ)− σ = σ(si − 1)− si (B.2-13)

Equation (B.2-13) reflects the own-price elasticity for the standard CES utility function. Finally,
with e uniform but not σ, we have:

εi = si



2σi − 1−
∑

j

sjσj



− σi (B.2-14)

The derivation of the cross elasticities is almost identical and will not be carried out here.
Combining both the own-and cross price elasticities, the matrix of substitution elasticities takes
the following form where we use the Kronecker product, δ:3

εij = sj



−bj −
eibi

∑

k

skek
+

∑

k

skekbk
∑

k

skek



+ δij(bi − 1) (B.2-15)

3 δ takes the value of 1 along the diagonal (i.e. when i = j) and the value 0 off-diagonal (i.e. when i 6= j).
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Again, we replace b by 1− σ, to get:

εij = sj



σj −
ei(1− σi)
∑

k

skek
−

∑

k

skekσk
∑

k

skek



− δijσi (B.2-16)

For uniform σ, equation (B.2-16) takes the form:

εij = −
eisj(1− σ)
∑

k

skek
− δijσ (B.2-17)

And with a uniform σ and e, i.e. the CES assumption, we have:

εij = −sj(1− σ)− δijσ = σ(sj − δij)− sj (B.2-18)

Finally, for a uniform e only, the matrix of elasticities is:

εij = sj

[

σj − (1− σi)−
∑

k

skσk

]

− δijσi (B.2-19)

The income elasticities are derived in a similar fashion:

ηi =
∂xi
∂Y

Y

xi
=

1
∑

k

skek

[

eibi −
∑

k

skekbk

]

− (bi − 1) +
∑

k

bksk (B.2-20)

For this, we need the elasticity of utility with respect to income:

∂u

∂Y

Y

u
= −

Y

u

(

∂V

∂Y

)

/

(

∂V

∂u

)

=
1

∑

k

skek
(B.2-21)

Note that for a uniform and unitary e, the income elasticity of utility is 1.
Replacing b with 1− σ, equation (B.2-20) can be re-written to be:

ηi =
1

∑

k

skek

[

ei(1− σi) +
∑

k

skekσk

]

+ σi −
∑

k

skσk (B.2-22)

With a uniform σ, the income elasticity becomes:

ηi =
1

∑

k

skek

[

ei(1− σ) + σ
∑

k

skek

]

=
ei(1− σ)
∑

k

skek
+ σ (B.2-23)

With e uniform, the income elasticity is unitary, irrespective of the values of the σ parameters.
From the Slutsky equation, we can calculate the compensated demand elasticities:

ξij = εij + sjηi = −δijσi + sj

[

σj + σi −
∑

k

skσk

]

(B.2-24)

The cross-Allen partial elasticities are equal to the compensated demand elasticities divided by the
share:

σaij = σj + σi −
∑

k

skσk − δijσi/sj (B.2-25)
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It can be readily seen that the difference of the partial elasticities is constant, hence the name of
constant difference in elasticities.

σaij − σail = σj − σl (B.2-26)

With a uniform σ, we revert back to the standard CES where there is equivalence between the CES
substitution elasticity and the cross-Allen partial elasticity:

σaij = σ (B.2-27)

B.1.3 Calibration of the CDE

Calibration assumes that we know the budget shares, the own uncompensated demand elasticities
and the income elasticities. The weighted sum of the income elasticities must equal 1, so the first
step in the calibration procedure is to make sure Engel’s law holds. One alternative is to fix some
(or none) of the income elasticities and re-scale the others using least squares. The problem is to
minimize the following objective function:

∑

i∈Ω

(

ηi − η0i
)2

subject to

∑

i∈Ω

siηi = 1−
∑

i/∈Ω

siηi

where the set Ω contains all sectors where the income elasticity is not fixed, i.e. its complement
contains those sectors with fixed income elasticities. The solution is:

ηi = η0i + si

1−
∑

j /∈Ω

sjηj −
∑

j∈Ω

sjη
0
j

∑

j∈Ω

s2j
∀i ∈ Ω

Calibration of the σ parameters is straightforward given the own elasticities and the input
value shares. The first step is to calculate the Allen partial elasticities, these are simply the income
elasticity adjusted by the own elasticities divided by the budget shares:

σaii = ηi +
εii
si

(B.2-28)

Next, equation (B.2-25) is setup in matrix form:

σaii = Aσi (B.2-29)

where the matrix A has the form:

A =



















2−
1

s1
− s1 −s2 . . . −sn

−s1 2−
1

s2
− s2 . . . −sn

...
...

. . .
...

−s1 −s2 . . . 2−
1

sn
− sn



















(B.2-30)
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or each element of A has the following formula:

aij = δij(2− 1/si)− sj

We can then solve for σ (and back-out the b parameters):

σi = A−1σaii (B.2-31)

There is nothing which guarantees the consistency of the calibrated σ parameters, which are meant
to be positive. The calculation of the σ parameters depends only on the budget shares and the
own-price uncompensated elasticities. If the calibrated σ parameters are not all positive, one could
modify the elasticities until consistency is achieved. In practice, problems have occurred when a
sector’s budget share dominates total expenditure.

The e parameters are derived from Equation (B.2-22) and normalizing them so that their share
weighted sum is equal to 1. Equation (B.2-22) can then be converted to matrix form and inverted:

B =











s1σ1 + (1− σ1) s2σ2 . . . snσn
s1σ1 s2σ2 + (1− σ2) . . . snσn
...

...
. . .

...
s1σ1 s2σ2 . . . snσn + (1− σn)











(B.2-32)

or

bij = sjσj + δij(1− σi)

Then the e parameters are derived from matrix inversion:

ei = B−1Ci = B−1

(

ηi − σi +
∑

k

skσk

)

(B.2-33)

Calibration of the α parameters is based on equations (B.2-1) and (B.2-3). Start first with
equation (B.2-3) and write it in terms relative to consumption of good 1, i.e.:

xi
x1

=
αibiu

eibi
(pi
Y

)bi−1

α1b1u
e1b1
(p1
Y

)b1−1
(B.2-34)

This equation can be used to isolate αi:

αi =
xi
x1

α1b1u
e1b1
(p1
Y

)b1−1

biu
eibi
(pi
Y

)bi−1
(B.2-35)

and then inserted into equation (B.2-3):

n
∑

i=1

αiu
eibi
(pi
Y

)bi
= α1u

e1b1 b1
s1

(p1
Y

)b1

[

n
∑

i=1

si
bi

]

≡ 1 (B.2-36)
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The final expression in equation (B.2-36) can be used to solve for α1 since the formula must equal 1
by definition:

α1 = u−e1b1 s1
b1

(

Y

p1

)b1
[

n
∑

i=1

si
bi

]−1

(B.2-37)

Substituting back into equation (B.2-36) we get:

αi =
xi
bi
u−eibi

(

Y

pi

)bi−1




n
∑

j=1

sj
bj





−1

(B.2-38)

The final calibration expression is then the following:

αi =
si
bi

(

Y

pi

)bi u−eibi

n
∑

j=1

sj
bj

(B.2-39)

Utility is undefined in the base data and it is easiest to simply set it to 1.
In conclusion, for calibration we need the budget shares, initial prices, total expenditure, in-

come elasticities and the own-price uncompensated elasticities. From this, we can derive base
year consumption volumes, the Allen partial substitution elasticities through equation (B.2-28), σ
(and therefore b) through equation (B.2-31) and the inversion of the A-matrix, e through equa-
tion (B.2-33) and inversion of the B-matrix, and finally α through equation (B.2-39).

It is possible that the initial shares and elasticities lead to inconsistent calibrated values for
the b or e parameters. One solution, modified from Hertel (1997), is to implement some sort of
maximum entropy method—explicitly imposing the constraints on the parameters. Step 1 is to
calibrate the b-parameters using the following minimization problem:

minL =
∑

i

si(εii − ε0ii)
2

subject to

εii = (1− bi) (si − 1)− si



bi + ηi −
∑

j

sjbj





0 < bi < 1

The loss function is a weighted some of square errors where ε0 represents the initial or target
own-price elasticity and ε will be the estimated elasticity with the constraints holding. The first
constraint is a transformation of equation (B.2-8) where the income elasticity is substituted into
the definition of the own-price elasticity (swapping out for the yet unknown e-coefficients). One
critical issue is to ascertain what income elasticities to use in the formula above. One could use the
target income elasticities, or an initial transformation of the target elasticities such as described
above.

The next step calibrates the e-parameters with some target income elasticities as given as well
as the now calibrated b-parameters. The minimization problem is formulated as the following:

minL =
∑

i

si(ηi − η0i )
2
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subject to

ηi =
1

∑

k

skek

[

eibi −
∑

k

skekbk

]

− (bi − 1) +
∑

k

bksk

∑

i

siηi ≡ 1

(ηi − 1)
(

η0i − 1
)

> 0

The final constraint insures that the estimated income elasticities preserve their relationship
relative to 1, i.e. target elasticities lower than 1 remain lower than 1 in the estimation procedure.

B.1.4 CDE in first differences

It is useful to decompose changes in demand using a linearized version of the demand function, and
that which is used in the standard GEMPACK version of the CDE function. The CDE implicit
utility function can be used to derive a relation between changes in income, utility and prices (all
in per capita terms). The first step in the differentiation of the utility function, equation (B.2-1),
leads to the following expression:

0 =
∑

i
αieibiu

eibi−1
(pi
Y

)bi
du

−
∑

i
αibiu

eibi
(pi
Y

)bi−1 pi
Y 2

dY

+
∑

i
αibiu

eibi
(pi
Y

)bi−1 1

Y
dpi

This can be simplified by inserting the expression for the demand equation, equation (B.2-3), and
replacing demand with the budget shares (si):

0 =
du

u

∑

i

eisi −
dY

Y

∑

i

si +
∑

i

si
dpi
pi

And the final expression can be written as:

.
Y =

∑

i

eisi
.
u+

∑

i

si
.
pi (B.2-40)

where the dotted variables represent the percent change (and noting that the sum of the budget
shares is equal to 1).

The differentiation of the demand function, equation (B.2-3) is somewhat more tedious. The
first step leads to the following expression:
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dxi = αibieibiu
eibi−1

(pi
Y

)bi−1 du

D

+ αibiu
eibi (bi − 1)

(pi
Y

)bi−2 1

Y

dpi
D

− αibiu
eibi (bi − 1)

(pi
Y

)bi−2 pi
Y 2

dY

D

− αibiu
eibi
(pi
Y

)bi−1
D−2

∑

j

αjbjejbju
ejbj−1

(pj
Y

)bj
du

− αibiu
eibi
(pi
Y

)bi−1
D−2

∑

j

αjbjbju
ejbj
(pj
Y

)bj−1 1

Y
dpj

+ αibiu
eibi
(pi
Y

)bi−1
D−2

∑

j

αjbjbju
ejbj
(pj
Y

)bj−1 pj
Y 2

dY

where D is the denominator in the demand equation. This can be simplified to the following
expression in terms of the percent changes:

.
xi = eibi

.
u+ (bi − 1)

.
pi − (bi − 1)

.
Y

−
∑

j

ejbjsj
.
u−

∑

j

bjsj
.
pj +

∑

j

bjsj
.
Y

Re-grouping terms, the expression becomes:

.
xi = (bi − 1)

.
pi −

∑

j
bjsj

.
pj

+
.
u

[

eibi −
∑

j
ejbjsj

]

+
.
Y

[

∑

j
bjsj − (bi − 1)

]

The percent change in u can be replaced with the expression above, equation (B.2-40), to yield the
following after re-arrangement:

.
xi = (bi − 1)

.
pi −

∑

j

bjsj
.
pj −

1
∑

k

eksk

∑

j

sj
.
pj

[

eibi −
∑

k

ekbksk

]

+
.
Y





∑

k

bksk − (bi − 1) +
1

∑

k

eksk

(

eibi −
∑

k

ekbksk

)





The final formula inserts the formulas for the income and price elasticities from above to simplify
further to the following expression:

.
xi =

∑

j

εij
.
pj + ηi

.
Y (B.2-41)

B.2 The ELES demand system

Many models assume separability in household decision making between saving and current con-
sumption. Lluch and Howe4 introduced a relatively straightforward extension of the LES consumer

4 See Lluch (1973) and Howe (1975).
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demand function to include the saving decision simultaneously with the allocation of income on
goods and services, this has become known as the extended linear expenditure system or the ELES.
The ELES is based on consumers maximizing their intertemporal utility between a bundle of current
consumption and an expected future consumption bundle represented in the form of savings.

B.2.1 Basic formulation

The utility function of the ELES has the following form:

u =
∏

i

(xi − θi)
µi

(

S

P s

)µs

(B.2-42)

with

∑

i

µi + µs = 1 (B.2-43)

where u is utility, x is the vector of consumption goods, S is household saving (in value), P s is the
price of saving, and µ and θ are ELES parameters.

The consumer solves the following problem:

max
∏

i

(xi − θi)
µi

(

S

P s

)µs

subject to

n
∑

i=1

pixi + S = Y

where p is the vector of consumer prices, and Y is disposable income. The demand functions are:

xi = θi +
µi
pi



Y −

n
∑

j=1

pjθj



 (B.2-44)

S = µs



Y −

n
∑

j=1

pjθj



 = Y −

n
∑

j=1

pjxj (B.2-45)

The term in parentheses is sometimes called supernumerary income, i.e. it is the income that
remains after subtracting total expenditures on the so-called subsistence (or floor) expenditures as
represented by the θ parameter. The parameter µ then represents the marginal budget share out
of supernumerary income.

B.2.2 ELES elasticities

From the demand equation we can derive the income and price elasticities:

ηi =
µiY

pixi
=
µi
si

ηs =
µsY

S
=
µs
s

(B.2-46)

εi =
θi (1− µi)

xi
− 1 εs = −1 (B.2-47)
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εij = −
µipjθj
pixi

= −
µipjθj
siY

εsj = −
µspjθj
sY

= −
pjθj
Y ∗

(B.2-48)

where s is the average propensity to save. Note that the matrix of elasticities can be collapsed to
a single formula using the Kronecker factor:

εij = −
µipjθj
pixi

− δij
pixi − piθi

pixi
= −

µi
siY

[δijY
∗ + pjθj] = −ηi

[

δij
Y ∗

Y
+
pjθj
Y

]

(B.2-49)

The last expression shows that there is clear linkage between the income and price elasticities. At
the limit, when income is much larger than supernumerary income, the two are virtually identical
in levels (with opposite signs).

B.2.3 Welfare

With the addition of saving, the indirect utility function is given by:

v(p, Y ) =
∏

i

(

µi
pi
Y ∗

)µi ( µs
P s
Y ∗
)µs

(B.2-50)

or

v(p, Y ) =
Y ∗

P
(B.2-51)

where

P =
∏

i

(

pi
µi

)µi
(

P s

µs

)µs

The expenditure function is derived by minimizing the cost of achieving a given level of utility,
u. It is set-up as:

min

n
∑

i=1

pixi + S

subject to
∏

i

(xi − θi)
µi

(

S

P s

)µs

= u

The final expression for the expenditure function is:

E (p, u) =

n
∑

i=1

piθi + uP (B.2-52)

where P , the aggregate price index (including the price of savings) is defined as above.
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B.2.4 Calibration

Calibration of the ELES uses the budget share information from the base SAM, including the
household saving share. Typically, calibration uses income elasticities for all of the n commodities
represented in the demand system and uses equation (B.2-46) to derive the marginal budget shares,
µi. This procedure leads to a residual income elasticity, which in this case is the income elasticity
of saving. The derived savings income elasticity may be implausible, in which case adjustments
need to be made to individual income elasticities for the goods, or adjustments can be made on the
group of goods, assuming some target for the savings income elasticity.

The first step is therefore to calculate the marginal budget shares using the average budget
shares and the initial income elasticity estimates.

µi =
ηipixi
Y

= ηisi

The savings marginal budget share is derived from the consistency requirement that the marginal
budget shares sum to 1:

µs = 1−
n
∑

i=1

µi

Assuming this procedure leads to a plausible estimate for the savings income elasticity, the
next step is to calibrate the subsistence minima, θ. This can be done by seeing that the demand
equations, (B.2-44), are linear in the θ parameters. Note that in the case of the ELES the system of
equation are of full rank because the µi parameters do not sum to 1 (over the n commodities)—they
only sum to 1 including the marginal saving share.5 This may lead to calibration problems if the
propensity to save is 0, which may be the case in some SAMs with poor households. The linear
system can be written as:

C = Iθ +MY −MΠθ

where I is an n× n identity matrix, M is a diagonal matrix with µi/Pi on the diagonal, and Π is
a matrix, where each row is identical, each row being the transpose of the price vector. The above
system of linear equations can be solved via matrix inversion for the parameter θ:

θ = A−1C∗

where

A = I −M Π

C∗ = C −MY

The matrices A and C∗ are defined by:

A = [aij ] =

[

δij − µi
pj
pi

]

=

{

1− µi if i = j

−µi
pj
pi

if i 6= j

C∗ = [ci] = xi −
µiY

pi

5 Note that the calibration and the setup of the ELES assume explicitly that the minimal expenditure on savings
is zero.
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The A and C∗ matrices are simplified if the price vector is initialized at 1:

A = [aij] =

{

1− µi if i = j
−µi if i 6= j

C∗ = [ci] = xi − µiY

In GAMS one could invert the system of equations embodied in equation (B.2-44) directly by
solving for the endogenous θ while holding all of the other variables and parameters fixed.

B.3 The AIDADS demand system

Many commonly used utility functions typically exhibit poor Engel behavior—particularly in a dy-
namic framework. The CDE utility function, popularized by the GTAP model (see Hertel (1997)),
has relatively constant income elasticities. The LES utility function has even worse behavior, as in
the absence of any shifts in the underlying parameters, the LES converges relatively quickly to a
Cobb-Douglas utility function as rapidly rising consumption tends to dominate the floor consump-
tion parameters, even when adjusting the latter to take into account population growth. Rimmer
and Powell (see Rimmer and Powell (1992b), Rimmer and Powell (1992a) and Rimmer and Powell
(1996)) examine an extension to the standard LES demand system that in effect allows the marginal
propensity to consumer parameter to be driven by changes in utility. Their utility function has been
called An Implicitly Direct Additive Demand System, or AIDADS. The LES function is a special
case of the AIDADS system where the marginal propensity variable is constant. This extension al-
lows for more complex demand behavior, as well as providing better validation for observed changes
in consumption patterns.6

B.3.1 Basic formulation

AIDADS starts with the implicitly additive utility function given by:

∑

i

Ui (xi, u) ≡ 1 (B.2-53)

Assume the following functional form for the utility function:

Ui = µi ln

(

xi − θi
Aeu

)

(B.2-54)

where

µi =
αi + βiG (u)

1 +G (u)
(B.2-55)

with the restrictions

∑

i

αi =
∑

i

βi = 1

0 ≤ αi ≤ 1

0 ≤ βi ≤ 1

6 AIDADS has also been explored in the context of the GTAP model, see for example Yu et al. (2003).
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θi < xi

Cost minimization implies the following:

min
∑

i

pixi

subject to

∑

i

µi ln

(

xi − θi
Aeu

)

≡ 1 (B.2-56)

The first order conditions lead to:

λ
∂Ui

∂xi
= pi = λ

µi
xi − θi

⇒ λµi = pixi − piθi (B.2-57)

Taking the sum over i and using the fact that the µi sum to unity implies:

λ =
∑

i

pixi −
∑

i

piθi = Y −
∑

i

piθi = Y ∗ (B.2-58)

where Y is aggregate expenditure, and Y ∗, sometimes referred to as supernumerary income, is
residual expenditure after subtracting total expenditure on the so-called subsistence minima, θ.

Re-inserting equation (B.2-58) into (B.2-57) yields the consumer demand equations:

xi = θi +
µi
pi
Y ∗ = θi +

µi
pi



Y −
∑

j

pjθj



 (B.2-59)

Equation (B.2-59) is virtually identical to the LES demand equation. Similar to the linear
expenditure system (LES), demand is the sum of two components—a subsistence minimum, θ, and
a share, µ, of supernumerary income. Unlike the LES, the share parameter, µ, is not constant,
but depends on the level of utility itself. AIDADS collapses to the LES if each α parameter is
equal to the corresponding β parameter, with the ensuing function of utility, G(u), dropping from
equation (B.2-55).

B.3.2 Elasticities

This section develops the main expressions for the income and price elasticities. These formulas
will be needed to calibrate the initial parameters of the AIDADS function.

Income elasticities

To derive further properties of AIDADS requires specifying a functional form forG(u). Rimmer and Powell
(1996) propose the following:

G(u) = eu (B.2-60)

The first step is to calculate the marginal budget share, ρ , defined as:

ρi = pi
∂xi
∂Y

The following expression can be derived from equation (B.2-59):
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∂xi
∂Y

=
Y ∗

pi

∂µi
∂Y

+
µi
pi

∂Y ∗

∂Y
=
Y ∗

pi

∂µi
∂u

∂u

∂Y
+
µi
pi

Thus:

ρi = µi + Y ∗∂µi
∂u

∂u

∂Y
(B.2-61)

Expression (B.2-61) can be expanded in two steps—first evaluating the partial derivative of
the share variable, µ, with respect to utility, and then the more difficult calculation of the partial
derivative of u with respect to income. The marginal share formula is:

µi =
αi + βie

u

1 + eu

Its derivative is:

∂µi
∂u

=
(1 + eu) (βie

u)− (αi + βie
u) eu

(1 + eu)2
=
eu (βi − αi)

(1 + eu)2
(B.2-62)

Utility and income are combined in implicit form and thus we will invoke the implicit function
theorem to calculate the partial derivative of u with respect to Y . First, insert equation (B.2-59)
into equation (B.2-56):

∑

i

µi ln

(

xi − θi
Aeu

)

=
∑

i

µi ln

(

µiY
∗

Aeupi

)

=1

Expanding the latter expression yields:

f (u, Y ) =
∑

i

µi ln

(

µi
pi

)

+ ln (Y ∗)− ln (A)− u = 1 (B.2-63)

which provides the implicit relation between Y and u. The implicit function theorem states the
following:

∂u

∂Y
= −

∂f

∂Y

[

∂f

∂u

]−1

(B.2-64)

The partial derivative of f with respect to Y is simply:

∂f

∂Y
=

1

Y ∗
(B.2-65)

The partial derivative of f with respect to u is:

∂f
∂u

= −1 +
∑

i

[

∂µi
∂u

ln

(

µi
pi

)

+ µi
pi
µi
pi
∂µi
∂u

]

= −1 + eu

(1 + eu)2
∑

i

[(

ln
(

µi
pi

)

+ 1
)

(βi − αi)
]

= eu

(1 + eu)2

[

∑

i
(βi − αi) ln (xi − θi)−

(1 + eu)2

eu

]

= eu

(1 + eu)2
Ω−1

(B.2-66)
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where

Ω =

[

∑

i

(βi − αi) ln (xi − θi)−
(1 + eu)2

eu

] −1

(B.2-67)

The second line uses equation (B.2-62). In the third line, equation (B.2-59) substitutes for the
expression in the logarithm, and the adding up constraint allows for the deletion of non-indexed
variables. Substituting equations (B.2-65) and (B.2-66) into equation (B.2-64) yields:

∂u

∂Y
= −

Ω

Y ∗

(1 + eu)2

eu
(B.2-68)

Substituting equations (B.2-62) and (B.2-68) into equation (B.2-61) yields the following expression
for ρ:

ρi = µi − (βi − αi) Ω

The income elasticities are derived from the following expression:

ηi =
∂xi
∂Y

Y

xi
=
∂xi
∂Y

Y

xi

pi
pi

=
ρi
si

where si is the average budget share:

si =
pixi
Y

=
piθi
Y

+ µi
Y ∗

Y
= µi +







piθi − µi
∑

j
pjθj

Y







Thus the income elasticity, η, is equal to the ratio of the marginal budget share, ρ, and the average
budget share, s. Finally, equation (B.2-69) describes one formulation of the income elasticity:

ηi =
µi − (βi − αi) Ω

si
(B.2-69)

Price elasticity

The matrix of substitution elasticities is identical to the expression for the LES and has the form:

σij = [µj − δij ]
µiY

∗

sisjY
(B.2-70)

where δ is the Kronecker delta:

δij =

{

1 i = j
0 i 6= j

It is clear that the matrix is symmetric. The matrix of substitution elasticities is also equal to:

σij = [µj − δij ]
µiY

∗

sisjY
=

(xi − θi)

xi

(xj − θj)

xj

Y

Y ∗
−
δij
sj

(xi − θi)

xi

The compensated demand elasticities derive from the following:

ξij = sjσij = [µj − δij ]
µiY

∗

siY
(B.2-71)
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Finally, the matrix of uncompensated demand elasticities is given by:

εij = ξij − sjηi = [µj − δij ]
µiY

∗

siY
− sjηi (B.2-72)

The uncompensated demand elasticities can also be written as:

εij = −
µi
siY

[pjθj + δijY
∗] +

sj
si

(βi − αi)Ω (B.2-73)

The first term on the right-hand side is always negative. The second term differs from the
LES expression for the uncompensated demand elasticities.7 We can see from expression (B.2-73)
that the AIDADS specification allows for both gross complementarity and substitution. As well,
it allows for luxury goods, i.e. positive own-price demand elasticities should the second term be
positive and greater than the first term.

B.3.3 Implementation

Implementation of AIDADS is somewhat more complicated than the LES since the marginal propen-
sity to consume out of supernumerary income is endogenous, and utility is defined implicitly. The
following four equations are needed for model implementation:

Y ∗ = Y −
∑

i

piθi (B.2-74)

xi = θi +
µi
pi
Y ∗ (B.2-75)

µi =
αi + βie

u

1 + eu
(B.2-76)

u =
∑

i

µi ln (xi − θi)− 1− ln (A) (B.2-77)

Equations (B.2-74) and (B.2-75) are identical to their LES and ELES counterparts.8 Equa-
tion (B.2-76) determines the level of the marginal propensity to consume out of supernumerary
income, µ, which is a constant in the case of the LES (ELES). It requires however the calculation
of the utility level, u, which is defined in equation (B.2-77).

B.3.4 Calibration

[To be updated] Calibration requires more information than the LES. Where the LES has 2n
parameters to calibrate (subject to consistency constraints), AIDADS has 3n parameters (less
the consistency requirements)—α, β and θ. The calibration system includes equations (B.2-74)
through (B.2-77) which have 2+2n endogenous variables (Y ∗, θ, µ, and A). There are no equations
for calibrating the α and β parameters. If we have knowledge of the income elasticities, we can add
the following equations:

Ψ =
1

Ω
=

[

∑

i

(βi − αi) ln (xi − θi)−
(1 + eu)2

eu

]

(B.2-78)

7 Recall that for the LES, the α and β terms are equal and thus the second term drops.
8 Though the definition of Y includes savings in the case of the ELES.
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ηi =
ρi
si

=
µi − (βi − αi) Ω

si
=
µi
si

−
(βi − αi)

siΨ
(B.2-79)

There are an additional 1+n equations, solving for Ψ and α. There is need for an additional n
equations. Assuming we have knowledge of at least n price elasticities, for example the own-price
elasticities, we can add the following equation:

εii = −
µi
siY

[piθi + Y ∗] + (βi − αi)Ω (B.2-80)

The α and β parameters are not independent, the following restrictions must hold:

∑

i

αi = 1 (B.2-81)

∑

i

βi = 1 (B.2-82)

The system is under-determined, there are 5+4n equations and 3+4n variables. One solution, is
to make the own-price elasticities endogenous. In this case, we are adding n variables, but then the
system is over-determined. We can minimize a loss function with respect to the price elasticities:

L =
∑

i

(

εi − ε0i
)2

where ε0 represents an initial guess of the own-price elasticities and the calibration algorithm will
calculate the endogenous ε in order to minimize the loss function, subject to constraints (B.2-78)
through (B.2-82) and the model equations (B.2-74) through (B.2-77). The exogenous parameters
in the calibration procedure include p, x, s, Y , η, ε0 and u.
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Appendix C

Alternative trade specification

The GTAP database decomposes aggregate demand for goods and services by agent aa into a do-
mestic component and an (aggregate) import component. It is thus possible to implement the Arm-
ington specification at the agent level—though the default model uses a national Armington speci-
fication, in part to (significantly) reduce the size of the model. This short appendex describes how
the model needs to be modified to allow for agent-specific behavior. Equations (T-1) through (T-6)
in the model would be replaced by the equations in the block below. Equations (C.3-1) and (C.3-2)
define the Armington domestic and import components at the agent level, where all share param-
eters and substitution elasticities are agent-specific. Equation (C.3-3) defines the agent-specific
Armington price. And equations (C.3-4) and (C.3-5) determine the aggregate domestic demand
for domestic production and imports respectively. Under this specification, the variables XAT and
PAT are dropped. (N.B. This specification has not been reviewed for use with the ’energy aware’
version of Envisage. Among other potential issues, there are no γ parameters that allow for the
adding up of energy volumes in efficiency units.)

XDr,i,aa = αd
r,i,aa





PAr,i,aa
(

1 + τAdr,i,aa

)

PDr,i





σm
r,i,aa

XAr,i,aa (C.3-1)

XM r,i,aa = αm
r,i,aa





PAr,i,aa
(

1 + τAm
r,i,aa

)

PMT r,i





σm
r,i,aa

XAr,i,aa (C.3-2)

PAr,i,aa =

[

αd
r,i,aa

((

1 + τAm
r,i,aa

)

PDr,i

)1−σm
r,i,aa

+ αm
r,i,aa

((

1 + τAm
r,i,aa

)

PMT r,i

)1−σm
r,i,aa

]1/(1−σm
r,i,aa )

(C.3-3)

XDT d
r,i =

∑

aa

XDr,i,aa (C.3-4)

XMT r,i =
∑

aa

XM r,i,aa (C.3-5)

97



Appendix D

Alternative capital account closures

[To be completed]
... Envisage has three different closures for the capital account. The simplest is simply to fix

the capital account at base year levels. The second option, as described in Hertel (1997), is to allow
the capital account equilibrate changes in the expected rate of return to capital across regions,
i.e. the percentage change of regional rates of return are equal. If returns are equal initially, this
is equivalent to assuming perfect international capital mobility. The third option, also described
in Hertel (1997), assumes that the ’global’ investor has an optimal portfolio initially, and adjusts
capital flows to maintain the same portfolio ex post.

Equation (58) defines the average rate of return to capital in each region, AvgRoR. It is the
weighted average of the sectoral rates of return. [? Should the weights be fixed, i.e. indexed by t0 ?].
The current net rate of return, RoRC , is then defined as the average gross regional rate of return,
adjusted by changes to the unit cost of capital, and less depreciation-equation (59). Equation (60)
defines the motion equation for aggregate capital. The end-of-period capital stock, Kt+1, is equal
to the beginning period capital stock, Kt, adjusted for depreciation, and augmented by the current
period’s volume of investment, XC Inv . The expected rate of return, RoRE , is assumed to decline
with positive additions to the capital stock. This is the motivation behind equation (61). [See
Hertel (1997) for a more detailed description.] Equation (62) defines the value of net investment,
NInv . Equation (63) defines the average global rate of return, RoRG .

The three foreign capital closure rules are encapsulated in equation (64) and are driven by a
model flag labeled KFlowFlag . The first rule is simply to fix the capital account. To preserve
model homogeneity, the initial volume is multiplied by the model numéraire to provide a nominal
foreign saving. The second rule equates the percentage change in the expected rate of return in
each region. The third rule assumes that global investment is allocated across regions such that
the regional composition of investment is invariant. This implies that the percent change in net
investment is equal across regions [Shouldn’t we be using as a rule that the capital stock in value
terms is proportionately the same across regions]. Equation (64) is defined for all regions except
for one. The left out region is indexed by rSAV that is a subset of the set of regions, r. Closure
of the model is guaranteed by equation (65) that forces the global sum of the capital flows to be
identically equal to zero.
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Appendix E

Dynamic model equations with
multi-step time periods

The step size in the model scenarios are allowed to vary across time—in order to save compute
time and storage. Particularly in the long-run scenarios, annual increments are not particularly
useful. Some of the equations in the model—essentially almost any equation that relies on a lagged
variable need to take into account the variable step size, for example equation (G-1), the capital
accumulation equation.

KStock r,t = (1− δr,t)KStock r,t−1 + XC r,Inv ,t−1

In fact, this equation is not even necessary in the model for a step size of 1 since both variables on
the right-hand side of the equation are lags. However, let n be the step-size, possibly even 1. Then
through recursion, the capital accumulation function becomes:

KStock t = (1− δ)nKStock t−n +

n
∑

j=1

(1− δ)j−1
XC Inv ,t−j

If the model is run in step sizes greater than 1, the intermediate values of real investment are not
calculated. They can be replaced by assuming a compound growth model for investment:

XC Inv ,t =
(

1 + γI
)n

XC Inv ,t−n (E.5-1)

Replacing this in the accumulation function yields:

KStock t = (1− δ)n KStock t−n +
n
∑

j=1

(1− δ)j−1 (1 + γI
)n−j

XC Inv ,t−n

With some algebraic manipulation (that is done for a number of similar expressions below), this
formula can be reduced to the following:

KStock t = (1− δ)n KStock t−n +

(

1 + γI
)n

−
(

1− δI
)n

γI + δ
XC Inv ,t−n (E.5-2)

where we incorporate equation (E.5-1) in the model to evaluate the growth rate of investment.
The growth rate is itself a function of contemporaneous investment. If n is equal to 1, it is clear

that this equation simplifies to the simple 1-step accumulation function. The capital accumulation
function is no longer exogenous since it depends on the investment growth rate, which itself is
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endogenous. To avoid scale problems, equations (E.5-3) and (E.5-4) are used in place of (E.5-1)
and (E.5-2) to provide the n-step capital stock accumulation function. Equation (E.5-3) is likely to
evaluate to somewhere between 10 and 20 since the first term is 1 plus the average annual growth
of investment, to which is added the depreciation rate less 1. If investment growth is 5 percent
and depreciation is likewise 5 percent, then the value is 10. The first term on the right-hand side
of equation (E.5-4) is likely to be relatively small since it takes the previous capital stock and
subtracts a multiple of the previous period’s investment (lagged n years), and then multiplies by
the depreciation factor, so that the largest term is the second term, which is a multiple of the
current volume of investment.

IGFACT r,t =

[

(

XC r,Inv ,t

XC r,Inv ,t−n

)1/n

− 1 + δr,t

]−1

(E.5-3)

KStock t = [KStock r,t−n − IGFACT r,tXC r,Inv ,t−n] (1− δr,t)
n + IGFACT r,tXC r,Inv ,t (E.5-4)

The savings function, equation (D-1) also needs modification in a dynamic scenario with multiple
years between solution periods. The new equation (E.5-5) below shows the modification of the
savings function. It is readily seen that equation (E.5-5) collapses to equation (D-1) when the
inter-period gap is equal to 1.

ssr,t = χs
rα

s
r

1− (βsr)
n

1− βsr
+ (βsr)

n ssr,t−n

+
βgr g

pc
r,t − βgr g

pc
r,t−n (β

s
r)

n

1− βsr
(

gpcr,t−n/g
pc
r,t

)1/n

+
βyrDRATPLT15

r,t − βyrDRATPLT15
r,t−n (βsr)

n

1− βsr
(

DRATPLT15
r,t−n /DRATPLT15

r,t

)1/n

+
βerDRATP65UP

r,t − βerDRATP65UP
r,t−n (βsr)

n

1− βsr
(

DRATP65UP
r,t−n /DRATP65UP

r,t

)1/n

(E.5-5)
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Appendix F

Climate Modules

F.1 Introduction

This annex describes some of the features of the climate modules for the MERGE and DICE models.
The current version of Envisage uses the MERGE climate module as it accounts for more of the
greenhouse gases.

F.2 Multi-period functional forms and the MERGE climate mod-

ule

Envisage is designed to allow for variable time steps. This section describes the conversion of the
single-period time step equations to the multi-step time equations. The multi-period time steps
rely on a common stock-flow motion equation:

St+1 = δSt + βFt

where δ is a decay rate of the stock, S, and β is an adjustment factor to the flow, F .1 Using
induction, the motion equation becomes the following over multi-periods:

St+n = δnSt + β
n−1
∑

i=0

δn−i−1Ft+i

If we assume that flows grow at a constant rate between t and t+ n, the equation above becomes:

St+n = δnSt + βFt

n−1
∑

i=0

δn−i−1(1 + g)i = δnSt + βδnFt

n−1
∑

i=0

(

1 + g

δ

)i

The summation term can be simplified and the final formulation is:

St+n = δnSt + βFt
(1 + g)n − δn

1 + g − δ
= δnSt + β

Ft+n − δnFt

1 + g − δ

where

g =

(

Ft+n

Ft

)1/n

− 1

1 In the standard capital accumulation function, δ is 1 minus the depreciation rate and β is 1.
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If the flow is contemporaneous, instead of lagged by one period, it is easy to show that the multi-
period stock/flow motion equation is:

St+n = δnSt + β (1 + g)Ft
(1 + g)n − δn

1 + g − δ
= δnSt + β (1 + g)

Ft+n − δnFt

1 + g − δ

i.e. the initial flow is multiplied by the factor (1 + g).
Note that MERGE uses a different formulation to account for the inter-period accumulation

(and decay). It uses the mid-point of the flows and the formula is then:

St+n = δnSt + β0.5 (Et + Et+n)
1− δn

1− δ

Given these preliminaries, the first derivation refers to equation (C-9) that determines the level
of CO2 concentration in the different atmospheric boxes. In simplified form, the one-step equation
is:

Bt+1 = δBt + ϕEt+1

where δ is the decay rate of concentration in the box and ϕ is the share of contemporaneous
emissions accruing to the box. From the formulas above, the multi-period version of the equation
(with contemporaneous emissions) is:

Bt+n = δnBt + ϕ(1 + g)Et
(1 + g)n − δn

1 + g − δ
= δnBt + ϕ(1 + g)

Et+n − δnEt

1 + g − δ
(F.6-1)

where

g =

(

Et+n

Et

)1/n

− 1

The code in Envisage follows the MERGE formulation:

Bt+n = δnBt + ϕ0.5 (Et + Et+n)
1− δn

1− δ
(F.6-2)

where the fraction term is replaced by n in the case of δ = 1. In practical terms, both expressions
F.6-1 and F.6-2 provide similar results with the former needing in addition an equation for the
intra-period emissions growth rate.

The equation for the other greenhouse gases, equation (C-11), takes roughly the same form:

Ct+n = δnCt + (1 + g)Et
(1 + g)n − δn

1 + g − δ
= δnCt + (1 + g)

Et+n − δnEt

1 + g − δ

where there is a single box and thus the parameter ϕ drops out. Similar to carbon, the final
concentration equation uses a modified version of the MERGE equation:

Ct+n = δnCt + 0.5 (Et + Et+n)
1− δn

1− δ
(F.6-3)

The temperature equation is similar. In its simplest form, the temperature equation has the
change in temperature, ∆T , adjusting over a long-period to the potential temperature change,
∆PT :2

2 The period of adjustment is over 26 years, with λ equal to 0.038.
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∆Tt+1 = ∆Tt + λ (∆PT t −∆Tt) = (1− λ)∆Tt + λ∆PT t

Using the generic formulas from above, the multi-period version of the temperature change equation
is:

∆Tt+n = (1− λ)n∆Tt + λ∆PT t
(1 + g)n − (1− λ)n

g + λ

where g is the growth of ∆PT between periods t and t+ n. The MERGE formulation is:

∆Tt+n = (1− λ)n∆Tt + 0.5 ∗ (∆PT t +∆PT t+n) (1− (1− λ)n)

F.3 DICE 2007 climate module

This section describes the climate module used in the DICE 2007 model.3 It was the climate
module used in the original version of Envisage. It was replaced by the MERGE climate module
in order to handle the non-CO2 greenhouse gases. While not in current use, its description may be
of use to interested readers and the appendix also shows how the DICE module has been extended
to cover any time definition—not the fixed 10-year time steps of the DICE model.

The model contains three sinks for CO2 emissions—the atmosphere and the upper and deep
oceans. These three sinks are indexed by z. In each period, there is a flow of carbon across the
three sinks using a 3× 3 transition matrix, K. Each column of the transition matrix represents the
share of the stock in the sink that flows to a different sink. Thus the diagonal element represents
the share of the stock that stays in its own sink. The current values of the concentration transition
matrix are provided in more detail below.

Concz = K.Concz ,−1 + EMIGblz ,CO2 ,−1 (F.6-4)

Forcatmos = fCO2x
log10 (Concatmos/ConcPI )

log10(2)
+ ForcOth (F.6-5)

Tempzt = T.Tempzt ,−1 +Θ.Forczt (F.6-6)

Equation (F.6-4) determines the concentration level in each sink. The concentration level is
equal to its lagged value, multiplied by the transition matrix. In the absence of new emissions, one
can determine the long-term equilibrium by multiplying the matrix K n-times, where n is large
enough that the transition matrix converges towards a constant matrix. Carbon emissions are
entirely added to atmospheric concentration.4 Note that emissions in the model are in terms of
carbon. To convert to CO2, multiply the carbon emissions by the factor (44/12).

Equation (F.6-5) converts atmospheric concentrations to its impact on radiative forcing. Forcing
is a logarithmic function (based 10) of concentration with two key parameters. The first is the pre-
industrial concentration level, ConcPI . The second is the amount of forcing induced by a doubling
of concentration from its pre-industrial level, fCO2x . The relation allows for an exogenous amount
of forcing, that could eventually be negative, as is the current case, due to SO2 emissions.

Temperature, measured as the increment to temperature in °C since 1900, like concentration,
has interactions between the atmosphere and the oceans. In this case the ocean is treated as a

3 See Nordhaus (2008).
4 The variable EMIGbl is a vector defined overall all sinks, but emissions to the two ocean sinks are always 0.
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single sink and the subset zt of z covers only atmos and dpocn . Equation (F.6-6) provides the
link between temperature in the two sinks with their previous respective temperatures, through
a transition matrix T, and the incremental impact from forcing through the matrix Θ.5 The
temperature transition and forcing matrices are further developed below.

The transition matrices in the DICE model are based on a fixed 10-year time step between years.
In the Envisage model, the time gap is variable. The model therefore requires two modifications
to the DICE version of the climate module. First, it is necessary to convert the 10-year transition
matrices to a single-year transition matrix, and then to code the dynamic equations to allow for
variable gap dynamic expression.

F.3.1 Emissions and concentration

In the DICE model, the 10-year concentration transition matrix, B, has the following form and
values:

B =















atmos upocn dpocn

atmos b11 b12 b13
upocn b21 b22 b23
dpocn b31 b32 b33















=















atmos upocn dpocn

atmos 0.810712 0.097213 0
upocn 0.189288 0.852787 0.003119
dpocn 0 0.050000 0.996881















Nearly 19 percent of atmospheric carbon is absorbed by the upper sea (over a decade), and the
upper sea releases about 10 percent of its carbon to the atmosphere (over a decade).

If emissions end at some point T , then the equilibrium concentration of carbon can be given by
the following equation:

Conc∞ = B∞ConcT

The equilibrium B matrix, B∞, is given by:

B∞ =















atmos upocn dpocn

atmos 0.029269 0.029269 0.029269
upocn 0.056991 0.056991 0.056991
dpocn 0.913739 0.913739 0.913739















This implies that in the long run the atmosphere will contain just under 3 percent of total carbon
in all three physical zones (or sinks) as of the terminal year of emissions, with about 6 percent in
the upper ocean and the remaining 91 percent absorbed in the deep ocean. At today’s level of
carbon concentrations we would get the following equilibrium concentration levels (assuming all
emissions stop today):6

Conc∞ =





598
1, 164
18, 667



 = B∞





809
1, 255
18, 365





This translates into a reduction of 26 percent in atmospheric concentration and a rise of 1.6 per-
cent in deep ocean concentration. If the entire estimated amount of fossil fuels is spewed out into
the atmosphere, over the very long run, the atmospheric concentration would stabilize at 713 GTC,
lower than today’s level, but in the intermediate years, concentration levels could rise dramatically.

5 The variable Forc is a vector defined over both sinks but is only non-zero for the atmosphere.
6 The concentration is expressed at the stock of carbon (C) in gigatons.
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In the DICE baseline with no mitigation efforts, concentration levels in the atmosphere max out
at around 3,000 GTC in around 2250.

The matrix B is valid for a time horizon spanning 10 years. In other words, equation (F.6-4) in
terms of the DICE model is:

Concz ,t+10 = BCz,t +Et

where Et represents the cumulated emissions over 10 years through year t. It is possible to
convert B into an annual transition matrix with some matrix algebra and numerical evaluation. If
the matrix B is a positive definite matrix, than all of its eigenvalues are positive and it is possible
to take the nth root of the matrix B. The eigenvalues and eigenvectors of a real matrix B solve the
following matrix equation:

Bx = λx

In other words the projection of the vector x, by the matrix B is equal to that same vector
multiplied by a scalar, λ. The eigenvalues, λ, can be calculated by solving an n-degree polynomial
derived from the determinant of the above system:

Bx = λx⇔ (B− λ.I)x = 0 ⇒ |B− λ.I| = 0

Let V be the matrix of (right) eigenvectors of B (in columns), and Λ the diagonal matrix com-
posed of the eigenvalues (in the same order as the respective eigenvectors), then B is diagonalized
by:

B = V ΛV −1

It can be shown that if Λ has only positive eigenvalues7, than the nth root of B can be derived
from:8:

B1/n = V Λ1/nV −1

In the case of the B matrix above, a numerical package has been used to numerically calculate
the eigenvalues and eigenvectors:9

Λ =





0.694258 0 0
0 0.966122 0
0 0 1.000000



 V =





−0.635745 −0.311457 0.031954
0.761574 −0.497912 0.062219

−0.125829 0.809369 0.997551





7 If the diagonal elements of a square matrix B are all positive, and if B and B’ are both diagonally dominant,
then B is positive definite. The definition of diagonally dominant is that the absolute value of each diagonal
element is greater than the sum of absolute values of the non-diagonal elements in its row. That is if for all i
we have |aii| >

∑
{j|j 6=i} |aij |.

8 It is pretty easy to see this if n=2:

C = V Λ1/2
V

−1 = B1/2 ⇔ C.C = B ⇔ V Λ1/2
V

−1
.V Λ1/2

V
−1 = V Λ1/2

.Λ1/2
V

−1 = B

In the next to the last step the square root of the diagonal matrix is simply the square root of each diagonal
element and the multiplication of the two diagonal matrices is simply the original diagonal matrix. This is easy
to generalize for any integer root.

9 The eigenvectors are determined up to a scalar multiple. In the case above, they have been normalized to be on
the unit circle.
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Thus the annual transition matrix is given by:

K = B1/10 = V Λ1/10V −1 =





0.978025 0.011566 −0.000017
0.022520 0.983021 0.000338
−0.000545 0.005413 0.999680





Intuitively, one can see that the diagonal elements of K are roughly equal to the diagonal
elements of B raised to the power 0.1 and that the off-diagonal elements are roughly 10 percent of
the off-diagonal elements of B.

It is worth noting that the third eigenvector reflects the same distribution as the long-run
equilibrium distribution described above, corresponding to the eigenvalue 1. The equilibrium matrix
can also be derived from the following formula:

B∞ = Lim
n→∞

VKnV −1 = V





0 0 0
0 0 0
0 0 1



V −1 =







0.029269 0.029269 0.029269
0.056991 0.056991 0.056991
0.913739 0.913739 0.913739







Equation (F.6-4) can be written in cumulative form as:

Conct = KnConct−n +

n−1
∑

j=0

Kn−1−jEt+j−n

Assuming that emissions grow at a compound growth rate of ge between t − n and t, we have
the following:

Conct = KnConct−n +
n−1
∑

j=0
Kn−1−j(1 + g)jEt−j−1

= KnConct−n + (1 + g)n−1
n−1
∑

j=0
V Λn−1−j(1 + g)−n+1+jV −1Et−n

= KnConct−n + (1 + g)n−1V

[

n−1
∑

j=0
Λn−1−j(1 + g)−n+1+j

]

V −1Et−n

The expression within brackets is a diagonal matrix, so it is possible to use standard formulas for
a geometric progression to give the following:

Conct = V ΛnV −1Conct−n + V ΦV −1Et−n

where Λ is defined as above, and the diagonal matrix Φ is given by:

Φij =







λni − (1 + ge)n

λi − (1 + ge)
if i = j

0 if i 6= j

Based on these expressions, equation (F.6-4) that defines concentration for a one period gap is
replaced by equations (F.6-7), (F.6-8) and (F.6-9). Equation (F.6-7) determines the growth of emis-
sions between period t− n and t assuming a constant annual growth rate, gemi . Equation (F.6-8),
similar to the expression above, defines a 3× 3 matrix, EMIGFact , which is used to determine the
growth factor in the cumulative concentration expression. The parameter λc in the expression rep-
resents the eigenvalues of the transition matrix K. And equation (F.6-9), replacing equation (F.6-4)
determines the cumulative concentration, Conc, in period t. The first component on the right is
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the evolution of the existing stock of carbon concentration where V c is the matrix of eigenvectors
of the K matrix and Λc is the diagonal matrix of eigenvalues. The second component represents
cumulative emissions over the period n, with adjustments for the transition of the lagged emissions
across the sinks.

gemi
em,t =

(

EMIGblatmos,em,t

EMIGblatmos,em,t−n

)1/n

− 1 (F.6-7)

EMIGFactz ,t =
(λcz))

n −
(

1 + gemi
em,t

)n

λcz −
(

1 + gemem,t

) (F.6-8)

Conct = V c (Λc)n (V c)−1
Conct−n + (12/44).V cEMIGFactz ,t (V

c)−1
EMIGblz ,CO2 ,t−n (F.6-9)

F.3.2 Temperature

The temperature transition, similar to concentration, has to be modified to allow for multiple year
gaps. This section describes how the DICE formulation has been adapted for variable time steps.

The temperature module in DICE can be collapsed into matrix form:

T =M.T−1 + B.F =

[

1− β1(λ+ β2) β1β2
β3 1− β3

]

.T−1 +

[

β1
0

]

.F

where the transition and impact matrices, M and B are defined for a 10-year transition period. In
the steady-state, this can be written as:

T e = [I −M ]−1B.F

where F is a constant level of radiative forcing. The inverse matrix has a rather simple expression:

[I −M ]−1 =

[

1/(λβ1) β2/(λβ1)
1/(λβ1) (λ+ β2)/(λβ3)

]

This implies that the equilibrium temperature for both the atmosphere and the deep ocean is given
simply by:

T e = F/λ

With the default value for λ, the equilibrium temperature is about 0.8 times the equilibrium forcing
level.

Similar to the concentration equation above, the temperature equation is recursive and can be
collapsed into multi-period form by the following formula:

Tt+n = V ΛnV −1Tt + V ΦV −1B.Ft+n

where Λ is the diagonal matrix of eigenvalues of the one-period transition matrix, and the diagonal
matrix Φ is given by:

Φij =















λni −
(

1 + gf
)n

λi

(

1 + gf
)n−−1

−
(

1 + gf
)n if i = j

0 if i 6= j
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where gf is the annual compound growth rate of forcing (F ) over the n-period range.
There are two differences with the concentration accumulation equation. The first is that the

forcing variable, F , is pre-multiplied by the matrix B. The second is that in the DICE code the
forcing variable is contemporaneous and not lagged—this changes the accumulation expression
compared to the one for concentration. Both nevertheless collapse to 1 when n is equal to 1.

Similar to the concentration matrix, but with additional complications, one must convert the
DICE-based 10-period M and B matrices into a 1-period matrix—hopefully preserving as well the
particular relations across the different cells of the matrices. The following steps provide one way
to do this:

1. Calculate the 10-period eigenvalues and eigenvectors of the 10-period M matrix so that the
following holds:

M = V ΛV −1

2. Calculate the 1/10th roots of the eigenvalues and then evaluate the 1-period M matrix, Γ:

Γ = V Λ0.1V −1

3. Calculate the β coefficients consistent with the values of the cells in Γ. There are too few
degrees of freedom, so some choices must be made. For example:

β2 =
λΓ12

1− Γ11 − Γ12
β1 =

Γ12

β2
β3 = Γ21 Γ22 = 1− β3

Thus, the bottom right cell of Γ is adjusted so that the sum along the bottom row is 1. The
one-period B matrix, B1 then becomes:

B1 = β1

4. Since the Γ matrix has been modified, it is necessary to re-calculate the eigenvalues and
eigenvectors consistent with the adjusted 1-period Γ matrix. The new one-period β coefficients
and the one-period eigenvalues and eigenvectors can be used for models that use one- or multi-
period steps.

Equations (F.6-5) and (F.6-6) are then replaced with (F.6-10) and (F.6-11), (F.6-12) and (F.6-13).
In equation (F.6-10) the only difference with Equation (F.6-5) is that the expression uses the av-
erage concentration between years t − n and t, rather than the concentration of a single year.
Equation (F.6-11) defines the average annual growth rate in forcing, gf , between years t−n and t.
Equation (F.6-12) defines a 2× 2 diagonal matrix that is used to provide the forcing growth factor,
ForcGFact , for the cumulative temperature transition equation. It is similar to expression (F.6-8)
save that the denominator is adjusted to account for the fact that forcing is assumed to impact
current temperatures, and not future temperatures, i.e. forcing and temperature are contempo-
raneous variables. The λt parameters are the eigenvalues of the temperature transition matrix.
Equation (F.6-13) represents the temperature/forcing relation for a multi-year transition period,
where V t is the matrix of eigenvectors of the temperature transition matrix, Λt is the matrix of
eigenvalues, and Θ is the direct impact of forcing on temperature.

Forcatmos = fCO2x
log10 (0.5 [Concatmos,t−n + Concatmos,t ] /ConcPI)

log10(2)
+ ForcOth (F.6-10)
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gft =

(

Forct

Forct−n

)n

− 1 (F.6-11)

ForcGFactzt ,t =

(

λtzt
)n

−
(

1 + gft

)n

λtzt

(

1 + gft

)n−1
−
(

1 + gft

)
(F.6-12)

Tempzt ,t = V t
(

Λt
)n (

V t
)−1

Tempzt ,t−n + V tForcGFactzt ,t
(

V t
)−1

Θ.Forczt (F.6-13)
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Appendix G

Examples of carbon taxes, emission
caps and tradable permits

G.1 Border tariff adjustment simulations

Border tariff adjustments (BTAs) have been a hotly contested subject since at least the early nego-
tiations over the Kyoto Protocol. The issue arises when a small coalition of countries unilaterally
implement emission reduction policies that raise domestic energy prices but have no direct impact
on energy prices outside the coalition. This has two consequences. The first is that the coalition
countries witness a loss in competitiveness and therefore market share—both at home and on export
markets. And, their emission reduction efforts could be partially—or even entirely—offset by rising
emission in non-coalition countries, the so-called carbon leakage effect. One response to either or
both of these effects is to raise a carbon tax on competing imports thereby raising the relative
price of imports with the aim of neutralizing the competiveness effect without of course affecting
directly market shares in other countries. The coalition countries are also likely to rebate the
carbon tax to exporters to maintain competitiveness outside the coalition. If the main concern is
competitiveness, coalition countries could use the domestic carbon content to calculate the needed
border tax adjustment. On the other hand, if the main concern is leakage, there could be a case for
using the carbon content of the import competing countries under an assumption that all producers
would therefore be paying the same price for their carbon emissions. This section describes how
the Envisage model has been modified to handle BTAs under these different assumptions.

G.1.1 Adjustment based on carbon content of domestic producers (or im-
porters)

The main idea is to level the playing field for domestic producers. The model calculates how
much the costs of production increase due to both the direct and indirect effects of the carbon
tax. It is an ex ante calculation in the sense that the cost structure of a reference year is chosen
before implementation of the BTA and assumes a given price and production structure. In a GE
framework prices and quantities will adjust so that the ex post increase in cost is likely to be lower
than the ex ante increase thus the BTA will over-compensate domestic producers.

Equation (G.7-1) defines the ex ante increase in unit cost, PX 1, generated by the carbon tax,
where the year tr , refers to a reference year prior to the implementation of the BTA and the super-
scripted price variables are the prices that reflect the direct and indirect costs of the carbon tax.
It assumes therefore a fixed technology and the same prices for factors—but augments the cost of
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intermediate goods by the carbon tax. The new unit cost will include both the direct and indirect
costs of the carbon tax. Equation (G.7-2) determines the ex ante price of intermediate goods,
PA1. It is assumed that the increase in intermediate goods is equal to the increase in the unit cost.
Equations (G.7-1) and (G.7-2) represent a recursive system in prices that will generate in the end
the relative increase in the unit cost of production induced by carbon taxation. Equation (G.7-3)
calculates the ex ante wedge in the unit cost, ωd, i.e. the wedge that is induced by the carbon tax
given the cost structure of the reference year. Equation (G.7-4) calculates the equivalent tariff that
is applied to imported goods that offsets the ex ante increase in the cost of domestic production.
A complicating factor is the multi-output structure of production. This is dealt with by taking the
weighted average of the different production streams (indexed by a) to produce commodity, i. The
weights are represented by the αp parameter and are calculated using the reference year shares:

αp
r,a =

∑

a∈{γp
r,a,i 6=0}

PPr,a,trXPr,a,tr

∑

i∈{γp
r,a,i 6=0}

PS r,i,trXPr,i,tr

For most commodity/activity combinations there is a one-to-one correspondence and the αp

parameter takes the value 1. Note that equations (G.7-1) and (G.7-2) hold for all activities and
commodities, whereas equation (G.7-4) is only applied to a subset of commodities indexed by
it . The index r represents countries that are self-imposing a carbon tax, whereas the index s in
equation (G.7-4) is for all countries that are not limiting emissions. Thus, even if there is uneven
effort (or uneven carbon taxes) across countries with GHG emission limits, there is no assumption
that a compensating mechanism will be in effect among these countries.

PX 1
r,a,t =

[

∑

i

PA1
r,i,a,tXAr,i,a,tr +

∑

fp

PF r,fp,a,trXF r,fp,a,tr

+
∑

i

∑

em

τ emi
r,em,tρr,em,i,aXAr,i,a,tr

]

/XPr,a,tr

(G.7-1)

PA1
r,i,a,t = PAr,i,tr

∑

a′∈{γp
r,a,i 6=0}

αp
r,a′PX

1
r,a′,tr

∑

a′∈{γp
r,a,i 6=0}

αp
r,a′PX r,a′,tr

(G.7-2)

ωd
r,a,t =

(

PX 1
r,a,t − PX r,a,tr

)

/PX r,a,tr (G.7-3)

τas,r,it,t =
∑

a∈{γp
r,a,i 6=0}

αp
r,aω

d
r,a,t (G.7-4)

Most border adjustment regimes would also include a cost-compensation for exports. A symmet-
ric additive adjustment factor can be included to existing export taxes subsidies. Equation (G.7-5)
defines the export subsidy adjustment, where r is the exporting country and has imposed a carbon
tax, and d is a destination country with no carbon tax.

τaer,d,it,t = −
∑

a∈{γp
r,a,i 6=0}

αp
r,aω

d
r,a,t (G.7-5)
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These new instruments require changes to equations that contain bilateral tariffs and/or export
tax subsidies. This reduces to four equations—equations (T-7) and (T-9) that define bilateral
trade prices, FOB and end-user respectively; and equations (Y-3) and (Y-4) that determine fiscal
revenues associated with import tariffs and export subsidies respectively.

WPE r,d,im =
(

1 + τ er,d,im + τ ear,d,im
)

PE r,d,im (G.7-6)

PM s,r,im =
(

1 + τms,r,im + τas,r,im
)

WPM s,r,im (G.7-7)

GREV r,mtax =
∑

i∈Arm

∑

s

(

τms,r,i + τas,r,i
)

WPM s,r,iWTF d
s,r,i +

∑

i/∈Arm

τmr,iPW iXMT r,i (G.7-8)

GREV r,etax =
∑

i∈Arm

∑

d

(

τ er,d,i + τaer,d,i
)

PE r,d,iWTF s
r,d,i +

∑

i/∈Arm

τ er,iPW iXET r,i (G.7-9)

G.1.2 Adjustment based on carbon content of exporters

A tax on the carbon content of imports may help to attenuate the leakage effect of unilateral
carbon taxes. The implementation involves assessing the ex ante cost of production in the exporting
countries (i.e. those not imposing a carbon tax) applying the carbon tax of the destination country.
This implies that the cost wedge and the tariff adjustment will vary across exporting countries for
the same destination economy, unlike the adjustment above where the tariff adjustment is uniform
across importing countries.

Equation (G.7-10) defines the fictitious carbon tax that is imposed on the cost of production
in the exporting country. It is bilateral as each of the importing countries has a different carbon
tax. Equation (G.7-11) defines the ex ante increase in unit cost, PX 2, generated by the carbon
tax, where the year tr , refers to a reference year prior to the implementation of the BTA and the
super-scripted price variables are the prices that reflect the direct and indirect costs of the carbon
tax. It assumes therefore a fixed technology and the same prices for factors—but augments the cost
of intermediate goods by the carbon tax. The new unit cost will include both the direct and indirect
costs of the carbon tax. It is a bilateral price as the carbon tax differs across countries of destination.
Equation (G.7-12) determines the ex ante price of intermediate goods, PA2. It is assumed that the
increase in intermediate goods is equal to the increase in the unit cost. Equation (G.7-13) calculates
the ex ante wedge in the unit cost, ωm, i.e. the wedge that is induced by the carbon tax given
the cost structure of the reference year. Equation (G.7-14) calculates the equivalent tariff that is
applied to imported goods that offsets the ex ante increase in the cost of domestic production.
Note that equations (G.7-11) through (G.7-13) hold for all activities and commodities, whereas
equation (G.7-14) is only applied to a subset of commodities indexed by it . The index r represents
countries that are self-imposing a carbon tax, whereas the index s is for all countries that are not
limiting emissions.

τ emi ,2
r,s,em,t = τ emi

r,em,t (G.7-10)

PX 2
r,s,a,t =

[

∑

i

PA2
r,s,i,a,tXAs,i,a,tr +

∑

fp

PF s,fp,a,trXF s,fp,a,tr

+
∑

i

∑

em

τ emi ,2
r,s,em,tρs,em,i,aXAs,i,a,tr

]

/XPs,a,tr

(G.7-11)
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PA2
r,s,i,a,t = PAs,i,tr

∑

a′∈{γp
s,a,i 6=0}

αp
s,a′PX

2
r,s,a′,tr

∑

a′∈{γp
s,a,i 6=0}

αp
s,a′PX s,a′,tr

(G.7-12)

ωd
r,s,a,t =

(

PX 2
r,s,a,t − PX s,a,tr

)

/PX s,a,tr (G.7-13)

τas,r,it,t =
∑

a∈{γp
s,a,i 6=0}

αp
s,aω

m
r,s,a,t (G.7-14)

Some scenarios allow for compensating a subset of regions for the imposition of a carbon tax.
Thus while high-income countries benefit from a uniform global price on carbon, developing coun-
tries may not desire to impose a tax that could be harmful to their economy, especially since
high-income countries are as at present mostly responsible for the current stock of GHG atmo-
spheric concentration. The compensation mechanism is implemented as a government to govern-
ment transfer, GTR. Given the fiscal closure rule, this implies that direct taxes on households will
shift—lower taxes for receiving countries and higher taxes for donor countries. Equation (G.7-15)
guarantees that the sum of the transfers adds up to zero globally where countries are divided into
donor and recipient countries. (N.B. The transfers are not bilateral.) Equation (G.7-16) is an
allocation mechanism across donor countries that insures that the transfers are equalized on a per
capita basis.

∑

r∈Donors

GTRr +
∑

r∈Recipients

GTRr ≡ 0 (G.7-15)

GTRpcr = GTRr/Popr for r ∈ Recipients (G.7-16)

The implementation requires exogenizing some objective for the recipient countries. In the
standard implementation, real domestic absorption is fixed to baseline values, where the superscript
BaU refers to the baseline level:

RYDr = RYDBaU
r for r ∈ Recipients

The addition of the new GTR variable requires a change to the government revenue equation:

YGr =
∑

gy

GREV r,gy +
∑

em

QuotaY E
r,em +GTRr (G.7-17)
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Appendix H

Base ENVISAGE parameters

Like most CGE models, Envisage contains a mix of calibrated and key parameters—the latter
sourced from a variety of studies. The basic framework of a comparative static CGE model is that
a base year data set is given—the GTAP world social accounting matrix (SAM), for example. This
represents value flows. Base prices are typically initialized at unit value, with some exceptions if
volume flows and/or stocks are available—for example energy in physical units or the stock of labor.
Parameters are then divided into two sets: key parameters—typically substitution, supply, price
and income elasticities—, and calibrated parameters. The model can be represented compactly by
the following formula:

F (Y,X; θ1, θ2)

where Y represents endogenous variables and X is the set of exogenous variables including policy
instruments. Both F and Y are typically of the same size—say n endogenous variables and n
equations—and X is of dimension m. θ1 is the set of key parameters and θ2 is the set of calibrated
parameters. The key parameters are given and typically estimated using outside sources and data.
In the calibration phase, both Y and X are given (by the base year data), and the function F
is inverted to calibrate the θ2 parameters such that the model can replicate the base year data.
Alternative scenarios then involve perturbing one or more elements in X and inverting the function
F to calculate a new Y , holding θ1 and θ2 constant.1 Note that sensitivity analysis on θ1, the key
parameters, typically requires re-calibrating θ2 for each new set of θ1. The rest of this appendix
presents the key parameter values used for Envisage.

H.1 Production elasticities

The basic production substitution elasticities are provided in Tables H.1 and H.2. They replicate
those used for the OECD GREEN model (see Burniaux, Nicoletti, and Oliveira-Martins (1992))
and likewise underlie the World Bank’s LINKAGE model. The original OECD GREEN model had
a single energy nest rather than the nested structure of Envisage. The uniformity of the energy
substitution elasticities therefore replicates the structure of GREEN.

1 Given the recursive nature of the model specification, calibration is typically done block by block with explicit
formulas rather than inverting the full model to calibrate the θ2 parameters.
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Table H.1: Production elasticities

Name Symbol Old New Note

sigmap σp 0.00 0.00

sigmav σv 0.12 1.00 Leontief technology in fossil fuel production

sigmake σke 0.00 0.80 Leontief technology in fossil fuel production

sigman σn 0.00 0.00 Not differentiated by vintage

Table H.2: Energy substitution elasticities in production

Name Symbol Old New Note

sigmae σe 0.25 2.00

sigmanely σnely 0.25 2.00

sigmaolg σolg 0.25 2.00

sigmaely σely 0.25 2.00

sigmacoa σcoa 0.25 2.00

sigmaoil σoil 0.25 2.00

sigmagas σgas 0.25 2.00

H.2 Final demand elasticities

Consumer final demand elasticities in the Envisage model are derived in large part from estimates
produced by the Economic Research Service (ERS) of the U.S. Department of Agriculture (USDA).2

The available estimates are for a reduced set of goods and these estimates are allocated over the
57 sectoring scheme of GTAP. They are aggregated using GTAP consumption shares for specific
aggregations of GTAP. Table H.3 provides the income elasticities for all 57 GTAP goods for a
selected aggregation across GTAP regions.3 The calibration procedure of Envisage may make
some adjustments to these elasticities to insure that the consumption weighted sum of the income
elasticities adds up to unity. Table H.4 provides the initial price elasticities used in the calibration
procedure for the same aggregate regions as in Table H.3—again using simple averages within
regions rather than consumption weighted.4

Equations (D-11) and (D-12) convert consumed goods to produced goods using a transition
matrix approach with a CES preference structure. The transition matrix is currently diagonal.

2 Regmi (2001), Seale, Jr., Regmi, and Bernstein (2003) and Regmi and Seale, Jr. (2010).
3 Regional aggregations in Table H.3 are simple—not consumption weighted.
4 The price elasticities are treated as negative values upon input.
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Table H.3: Consumer income elasticities for select regions

CHN XEA IND XSA RUS XEC MNA SSA LAC WEU JPN USA RHY

PDR 0.19 0.46 0.49 0.49 0.40 0.41 0.43 0.52 0.38 0.22 0.16 0.05 0.18

WHT 0.19 0.46 0.48 0.49 0.40 0.40 0.42 0.52 0.38 0.22 0.16 0.05 0.18

GRO 0.19 0.46 0.49 0.49 0.40 0.40 0.42 0.43 0.38 0.22 0.16 0.05 0.18

V F 0.38 0.55 0.58 0.55 0.50 0.49 0.51 0.50 0.48 0.33 0.24 0.08 0.29

OSD 0.23 0.48 0.50 0.52 0.43 0.43 0.45 0.54 0.41 0.25 0.18 0.06 0.21

C B 0.48 0.74 0.76 0.77 0.65 0.66 0.68 0.76 0.64 0.43 0.31 0.11 0.39

PFB 0.91 0.92 0.92 0.92 0.91 0.91 0.91 0.92 0.91 0.91 0.90 0.90 0.91

OCR 0.48 0.73 0.74 0.75 0.65 0.66 0.68 0.68 0.63 0.43 0.31 0.11 0.38

CTL 0.48 0.74 0.77 0.74 0.66 0.65 0.68 0.74 0.64 0.43 0.31 0.11 0.39

OAP 0.48 0.70 0.75 0.74 0.65 0.65 0.68 0.74 0.64 0.43 0.31 0.11 0.39

RMK 0.51 0.81 0.84 0.76 0.68 0.71 0.74 0.84 0.69 0.46 0.33 0.12 0.41

WOL 0.91 0.92 0.92 0.92 0.91 0.91 0.92 0.92 0.91 0.91 0.90 0.90 0.91

FRS 1.26 1.47 1.49 1.47 1.33 1.37 1.36 1.70 1.34 1.26 1.24 1.22 1.25

FSH 0.53 0.79 0.87 0.84 0.74 0.75 0.77 0.87 0.72 0.48 0.34 0.12 0.42

COA 1.17 1.23 1.24 1.24 1.19 1.21 1.20 1.27 1.20 1.17 1.16 1.15 1.16

OIL 1.18 1.25 1.26 1.26 1.21 1.22 1.22 1.29 1.21 1.18 1.17 1.16 1.17

GAS 1.17 1.23 1.24 1.24 1.19 1.20 1.20 1.27 1.20 1.17 1.16 1.15 1.16

OMN 1.26 1.48 1.50 1.49 1.33 1.37 1.36 1.74 1.35 1.26 1.24 1.22 1.25

CMT 0.48 0.73 0.77 0.77 0.61 0.65 0.67 0.74 0.60 0.42 0.31 0.10 0.38

OMT 0.48 0.70 0.77 0.77 0.64 0.65 0.64 0.72 0.61 0.41 0.31 0.10 0.38

VOL 0.24 0.46 0.51 0.48 0.42 0.43 0.45 0.51 0.39 0.25 0.18 0.06 0.20

MIL 0.51 0.79 0.82 0.82 0.69 0.69 0.71 0.83 0.66 0.43 0.33 0.11 0.41

PCR 0.19 0.39 0.46 0.38 0.40 0.41 0.43 0.49 0.36 0.22 0.15 0.05 0.17

SGR 0.48 0.73 0.76 0.73 0.64 0.66 0.67 0.74 0.63 0.43 0.31 0.11 0.38

OFD 0.48 0.61 0.72 0.73 0.61 0.62 0.64 0.58 0.57 0.39 0.27 0.08 0.36

B T 0.58 0.90 1.07 1.03 0.85 0.87 0.90 1.18 0.79 0.51 0.36 0.12 0.45

TEX 0.91 0.87 0.88 0.86 0.91 0.90 0.89 0.88 0.89 0.89 0.90 0.90 0.90

WAP 0.91 0.84 0.92 0.90 0.89 0.90 0.87 0.88 0.86 0.88 0.89 0.88 0.88

LEA 0.91 0.89 0.92 0.92 0.91 0.91 0.91 0.91 0.89 0.90 0.90 0.90 0.90

LUM 1.26 1.47 1.50 1.49 1.32 1.36 1.35 1.73 1.33 1.26 1.24 1.22 1.25

PPP 1.26 1.46 1.49 1.49 1.33 1.36 1.35 1.73 1.32 1.24 1.23 1.21 1.24

P C 1.18 1.15 1.20 1.24 1.17 1.19 1.17 1.25 1.14 1.14 1.15 1.14 1.15

CRP 1.27 1.41 1.48 1.45 1.30 1.34 1.33 1.67 1.26 1.23 1.23 1.20 1.23

NMM 1.26 1.47 1.50 1.48 1.33 1.37 1.35 1.73 1.34 1.26 1.24 1.22 1.25

I S 1.26 1.48 1.50 1.49 1.33 1.37 1.36 1.74 1.34 1.26 1.24 1.22 1.25

NFM 1.26 1.47 1.50 1.49 1.33 1.37 1.36 1.74 1.34 1.26 1.24 1.22 1.25

FMP 1.26 1.47 1.49 1.49 1.33 1.37 1.36 1.73 1.34 1.26 1.24 1.22 1.25

MVH 1.18 1.17 1.26 1.25 1.18 1.20 1.18 1.27 1.18 1.13 1.15 1.13 1.14

OTN 1.18 1.23 1.26 1.26 1.21 1.22 1.21 1.29 1.19 1.17 1.17 1.15 1.17

ELE 1.27 1.41 1.49 1.48 1.33 1.36 1.35 1.73 1.31 1.25 1.22 1.21 1.22

OME 1.27 1.43 1.49 1.49 1.31 1.34 1.35 1.73 1.32 1.24 1.23 1.20 1.23

OMF 1.26 1.41 1.49 1.48 1.32 1.36 1.34 1.71 1.30 1.24 1.23 1.21 1.23

ELY 1.17 1.17 1.22 1.21 1.12 1.13 1.16 1.24 1.16 1.13 1.15 1.14 1.15

GDT 1.17 1.23 1.24 1.24 1.18 1.17 1.20 1.27 1.20 1.17 1.16 1.15 1.16

WTR 1.17 1.23 1.24 1.24 1.18 1.20 1.20 1.25 1.19 1.16 1.15 1.14 1.16

CNS 1.17 1.23 1.24 1.24 1.19 1.20 1.20 1.26 1.19 1.16 1.16 1.15 1.16

TRD 1.19 0.92 1.17 1.19 0.97 1.11 1.08 1.08 1.03 1.01 0.99 0.98 0.94

OTP 1.18 1.19 1.22 1.15 1.15 1.18 1.18 1.23 1.12 1.14 1.13 1.14 1.14

WTP 1.18 1.25 1.25 1.23 1.20 1.22 1.22 1.29 1.21 1.17 1.17 1.16 1.17

ATP 1.18 1.22 1.26 1.23 1.20 1.21 1.21 1.28 1.19 1.17 1.16 1.16 1.15

CMN 1.18 1.22 1.26 1.25 1.20 1.20 1.20 1.27 1.17 1.15 1.15 1.13 1.15

OFI 1.27 1.44 1.49 1.49 1.33 1.36 1.34 1.70 1.30 1.23 1.23 1.15 1.22

ISR 1.26 1.45 1.50 1.48 1.33 1.37 1.35 1.72 1.32 1.24 1.21 1.18 1.22

OBS 1.27 1.41 1.48 1.46 1.28 1.33 1.27 1.67 1.31 1.09 1.22 1.21 1.22

ROS 1.33 1.71 1.79 1.71 1.42 1.52 1.47 2.47 1.41 1.28 1.23 1.16 1.25

OSG 1.28 1.42 1.49 1.46 1.30 1.36 1.29 1.77 1.25 1.19 1.18 0.99 1.16

DWE 1.18 1.06 1.18 1.18 1.20 1.19 1.17 1.21 1.02 1.16 1.02 0.99 1.03

Note: The regional abbreviations are China (CHN), Rest of East Asia & Pacific (XEA), India (IND), Rest of South Asia
(XSA), Russia (RUS), Rest of Europe & Central Asia (XEC), Middle East & North Africa (MNA), Sub-Saharan Africa
(SSA), Latin America & Caribbean (LAC), Western Europe (WEU), Japan (JPN), the United States (USA), and Rest of
High-income (RHY).

116



Table H.4: Consumer price elasticities for select regions

CHN XEA IND XSA RUS XEC MNA SSA LAC WEU JPN USA RHY

PDR 0.15 0.37 0.41 0.40 0.33 0.33 0.35 0.43 0.31 0.18 0.13 0.04 0.14

WHT 0.15 0.37 0.41 0.40 0.33 0.33 0.35 0.43 0.31 0.18 0.13 0.04 0.14

GRO 0.15 0.37 0.41 0.40 0.33 0.33 0.35 0.43 0.31 0.18 0.13 0.04 0.14

V F 0.30 0.48 0.51 0.50 0.43 0.43 0.44 0.51 0.42 0.28 0.20 0.07 0.25

OSD 0.19 0.39 0.43 0.42 0.35 0.35 0.37 0.44 0.33 0.20 0.15 0.05 0.17

C B 0.39 0.60 0.62 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

PFB 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

OCR 0.39 0.60 0.62 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

CTL 0.39 0.60 0.63 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

OAP 0.39 0.60 0.63 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

RMK 0.41 0.65 0.68 0.68 0.58 0.58 0.60 0.69 0.56 0.38 0.27 0.10 0.34

WOL 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

FRS 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

FSH 0.42 0.68 0.71 0.71 0.60 0.61 0.63 0.73 0.59 0.39 0.28 0.10 0.35

COA 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

OIL 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

GAS 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

OMN 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

CMT 0.39 0.60 0.63 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

OMT 0.39 0.60 0.63 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

VOL 0.19 0.39 0.43 0.42 0.35 0.35 0.37 0.44 0.33 0.20 0.15 0.05 0.17

MIL 0.41 0.65 0.68 0.68 0.58 0.58 0.60 0.69 0.56 0.38 0.27 0.10 0.34

PCR 0.15 0.37 0.41 0.40 0.33 0.33 0.35 0.43 0.31 0.18 0.13 0.04 0.14

SGR 0.39 0.60 0.62 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

OFD 0.39 0.60 0.62 0.62 0.53 0.54 0.55 0.62 0.52 0.35 0.25 0.09 0.31

B T 0.47 0.82 0.88 0.86 0.71 0.73 0.76 1.07 0.69 0.44 0.31 0.11 0.38

TEX 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

WAP 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

LEA 0.69 0.69 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

LUM 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

PPP 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

P C 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

CRP 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

NMM 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

I S 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

NFM 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

FMP 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

MVH 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

OTN 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

ELE 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

OME 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

OMF 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

ELY 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

GDT 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

WTR 0.87 0.93 0.94 0.94 0.90 0.91 0.90 0.96 0.90 0.87 0.86 0.85 0.86

CNS 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

TRD 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

OTP 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

WTP 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

ATP 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

CMN 0.82 0.91 0.92 0.92 0.86 0.87 0.87 0.95 0.86 0.82 0.80 0.79 0.81

OFI 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

ISR 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

OBS 0.86 1.07 1.09 1.09 0.94 0.97 0.96 1.29 0.95 0.86 0.83 0.81 0.85

ROS 0.99 1.41 1.40 1.39 1.10 1.17 1.14 1.98 1.12 0.99 0.95 0.93 0.97

OSG 0.91 1.13 1.15 1.14 0.98 1.02 1.01 1.39 1.00 0.91 0.88 0.86 0.90

DWE 0.77 0.85 0.87 0.87 0.81 0.82 0.82 0.89 0.81 0.77 0.75 0.74 0.76

Note: The regional abbreviations are China (CHN), Rest of East Asia & Pacific (XEA), India (IND), Rest of South Asia
(XSA), Russia (RUS), Rest of Europe & Central Asia (XEC), Middle East & North Africa (MNA), Sub-Saharan Africa
(SSA), Latin America & Caribbean (LAC), Western Europe (WEU), Japan (JPN), the United States (USA), and Rest of
High-income (RHY).
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Appendix I

The accounting framework

This appendix provides a visual representation of the accounting framework in the GTAP dataset
and linked to the model specified in this document. We use the Social Accounting Matrix (or SAM)
framework, which is somewhat space consuming, but has the advantage of providing a consistent
picture in a single snapshot.1 There is no unique representation of a SAM, the one depicted in
Figure A9-1 has the advantage of reflecting the accounts in basic prices and with all individual
price wedges.

I.1 SAM accounts

The figure itself does not need much description. There are 18 accounts in total, some of which
are purely pass-through accounts (to stick to the tradition that a SAM should be a square and
balanced matrix). Table (I.1) summarizes the accounts.

I.2 Correspondence with GTAP variables

Envisage variables are initialized using data available from the GTAP database. Tables (I.2)
and (I.3) describes this correspondence.

1 For an introduction to Social Accounting Matrices, see Pyatt and Round (1985) and Reinert and Roland-Holst
(1997).
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Table I.1: Description of the SAM accounts

Account Description

ACT Represents the production activities. The total is domestic output at producer price, the
latter includes the producer tax. Revenues are exhausted by payments to intermediate goods
(including sales tax) and to factors of production.

COMM Represents total supply—domestic production and imports. The latter enter at CIF prices,
to which are added import taxes. The disposition of total supply includes domestic sales
of domestic goods, XD , aggregate imports, exports and supply of international trade and
transport services.

DAP This is the disposition of domestic sales of domestic production at producer price (PD).

MAP This is the disposition of import sales at tariff inclusive import prices (that are uniform across
all agents).

DIT Revenues generated by the agent-specific sales tax on domestic products.

MIT Revenues generated by the agent-specific sales tax on imported products.

VA Value added accounts. In the activity column, it reflects the net of tax cost of the factors of
production. All factor remuneration is attributed to the single representative household.

VA TAX Revenues from taxes on the factors of production. All tax revenues are attributed to the
government account.

PTAX Output tax revenues.

EXP TAX Revenues (or cost) from export taxes (or subsidies).

IMP TAX Revenues from import tariffs.

HH Represents the accounts of the private sector. From a national account perspective, this is a
consolidated private sector that includes enterprises and non-governmental organizations. In
this SAM, the sole source of income for households is net factor remuneration. Expenditures
include demand for goods and services and savings net of depreciation. Households save and
pay income taxes to the government. Note that in the GTAP database the fiscal accounts
are not closed. The model is initialized to assume a zero government deficit and direct taxes
represent a residual to balance the household (and government accounts).

GOV The government collects all indirect taxes and purchases goods and services. Its account is
closed by assuming a lump-sum tax on households.

INV The investment account purchases goods and services. Its income comes from domestic
private savings gross of depreciation and foreign saving. Public saving is implicitly assumed
to be zero.

DEPR The depreciation account is a pass-through account.

TRADE The trade account measures the flow of exports (by region of destination) at FOB prices
and the flow of imports (by region of origin) at CIF prices. Aggregate exports and imports
(across sectors) are recorded in the balance of payment accounts (BoP) by region. The total
for these columns/rows is therefore the sum of exports and imports. The difference between
exports and imports provides the net trade with each region (though using different prices
since exports are evaluated FOB and imports are evaluated CIF). Aggregate exports (by
region) show up in the BoP column since they represent foreign income. Aggregate imports
(by region) show up in the BoP row.

ITT MARG This account shows the regional supply of international trade and transport services. Its
aggregate sum will show up in the BoP column since it is foreign revenue.

BoP This account has the consolidated balance of payments. Exports and supply of international
trade and transport services will show up as revenues in the column. Imports will show up in
the row as a payment to the rest of the world. The balancing item is the capital account that
appears in the column as a payment to the investment sector. If it is positive, the region is a
net capital importer. If it is negative, the region is a net capital exporter. In the aggregation
of all regional SAMs, this item should show up as a zero. Also, the sum of exports across
all regions and the sum of international trade and transport services should equal the sum
of imports.
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Table I.2: Correspondence of Envisage variables with GTAP database—domestic agents

Envisage GTAP Notes

PDr,iXDr,i,j VDFM i,j,r
Firms’ intermediate purchases of domestic goods at mar-
ket prices

PMTr,iXM r,i,j VIFM i,j,r
Firms’ intermediate purchases of imported goods at mar-
ket prices

τAd
r,i,jPDr,iXDr,i,j VDFAi,j,r−VDFM i,j,r

Tax revenues generated by sales tax on firms’ intermedi-
ate purchases of domestic goods (difference between pur-
chases at agents’ price and market price)

τAm
r,i,jPMT r,iXM r,i,j VIFAi,j,r−VIFM i,j,r

Tax revenues generated by sales tax on firms’ intermedi-
ate purchases of imported goods (difference between pur-
chases at agents’ price and market price)

PDr,iXDr,i,h VDPM i,r
Household (or private) purchases of domestic goods at
market prices.

PMTr,iXM r,i,h VIPM i,r
Household (or private) purchases of imported goods at
market prices.

τAd
r,i,hPDr,iXDr,i,h VDPAi,r−VDPM i,r

Tax revenues generated by sales tax on household pur-
chases of domestic goods (difference between purchases
at agents’ price and market price)

τAm
r,i,hPMTr,iXM r,i,h VIPAi,r−VIPM i,r

Tax revenues generated by sales tax on household pur-
chases of imported goods (difference between purchases
at agents’ price and market price)

PDr,iXDr,i,Gov VDGM i,r
Government (or public) purchases of domestic goods at
market prices.

PMTr,iXM r,i,Gov VIGM i,r
Government (or public) purchases of imported goods at
market prices.

τAd
r,i,GovPDr,iXDr,i,Gov VDGAi,r−VDGM i,r

Tax revenues generated by sales tax on government pur-
chases of domestic goods (difference between purchases
at agents’ price and market price)

τAm
r,i,GovPMT r,iXM r,i,Gov VIGAi,r−VIGM i,r

Tax revenues generated by sales tax on government pur-
chases of imported goods (difference between purchases
at agents’ price and market price)

PDr,i XDr,i,Inv VDFM i,cgds,r

Investment purchases of domestic goods at market prices.
N.B. Investment expenditure in the GTAP database is
part of the matrix of firms’ expenditures on intermediate
goods. It has the label ’CGDS’, i.e. expenditures on cap-
ital goods. The ’CGDS’ sector only purchases goods and
services (domestic and imported), but unlike other firm
expenditures, the ’CGDS’ sector does not purchase factors
of production.

PMTr,iXM r,i,Inv VIFM i,cgds,r Investment purchases of imported goods at market prices.

τAd
r,i,InvPDr,iXDr,i,Inv VDFAi,cgds,r−VDFM i,cgds,r

Tax revenues generated by sales tax on investment pur-
chases of domestic goods (difference between purchases
at agents’ price and market price)

τAm
r,i,InvPMTr,iXM r,i,Inv VIFAi,cgds,r−VIFM i,cgds,r

Tax revenues generated by sales tax on investment pur-
chases of imported goods (difference between purchases
at agents’ price and market price)

120



Table I.3: Correspondence of Envisage variables with GTAP database—other accounts

Envisage GTAP Notes

NPFr,fp,jXFr,fp,j EVFAfp,j,r

Firms’ payments to factors of production net of tax/subsi-
dies. Standard factors include unskilled and skilled labor,
capital, land (in agriculture and forestry) and natural re-
sources (in fisheries and mineral extraction sectors). Land
can also be broken out by agro-ecological zone (AEZ), of
which there are 18 categories.

τvr,fp,jNPFr,fp,jXFr,fp,j FBEP fp,j,r+FTRV fp,j,r
Revenues generated by taxes/subsidies on the factors of
production

τpr,jPX r,jXPr,j −OSEPj,r

Revenues generated by taxes/subsidies on output (change
of sign in Envisage relative to GTAP, i.e. tax rates are
positive and subsidies are negative, wedge is applied to
cost of production, not the market price)

PPr,jXPr,j TVOM j,r Value of domestic output at market prices

PEr,d,iWTF r,d,i VXMDi,r,d
Exports from region r into importing region d at producer
(or market) price.

WPEr,d,iWTFr,d,i VXWDi,r,d
Exports from region r into importing region d at border
(or FOB) price.

WPM s,r,jWTFs,r,j VIWS i,s,r
Imports into region r from exporter s at border (or CIF)
price.

PM s,r,jWTFs,r,j VIMS i,s,r Imports into region r from exporter s tariff inclusive.

τer,d,iPE r,d,iWTFr,d,i VXWDi,r,d−VXMDi,r,d

Export tax/subsidy revenues (for exporter r exporting to
region d). N.B. Export tax rates are positive and sub-
sidies negative—unlike in the standard GTAP definition,
wedge is applied to the producer (or domestic market)
price and not to the world (or FOB price).

τms,r,jWPM s,r,jWTFs,r,j VIMS i,s,r−VIWS i,s,r Tariff revenues (for importer r for imports sourced in s)

TMARGr,d,i VIWS i,r,d−VXWDi,r,d
Value of transport margin between exporter r and im-
porter d, i.e. wedge between CIF and FOB prices.

Sh
r,h SAVEr

Household savings. N.B. The GTAP database does not
distinguish private and public savings, the value of SAVE

represents aggregate domestic savings.

DeprY h
r,h VDEPr Value of depreciation allowance

PPr,iXMGr,i VST i,r
The supply of international trade and transport services
from region r.
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Table I.4: The schematic social accounting matrix for the Envisage model

ACT COMM DAP

Activities Pa,jXa,j

Commodities Diag(PDr,jXDTr,j)

Dom. Comm. PDr,iXDr,i,a

Imp. Comm. PMT r,iXM r,i,a

Tax Dom. Comm. τAd
r,i,aPDr,iXDr,i,a

Tax Imp. Comm. τAm
r,i,aPMT r,iXM r,i,a

Value Added NPFr,fp,aXFr,fp,a

VA tax τfr,fp,aNPFr,fp,aXFr,fp,a

Prod. tax τpr,aPX r,aXPr,a

Import tax τms,r,jWPM s,r,jWTFs,r,j

Export tax τer,d,jPE r,d,jWTF r,d,j

Households

Government

Investment

Depreciation

Trade WPM s,r,jWTFs,r,j

Intl. Margins

Rest of the world

Table I.4: The schematic social accounting matrix for the Envisage model (cont.)

MAP DIT MIT

Activities

Commodities Diag(PMT r,jXMTr,j)

Dom. Comm.

Imp. Comm.

Tax Dom. Comm.

Tax Imp. Comm.

Value Added

VA tax

Prod. tax

Import tax

Export tax

Households

Government
∑

aa τAd
r,i,aaPDr,iXDr,i,aa

∑
aa τAm

r,i,aaPMT r,iXM r,i,aa

Investment

Depreciation

Trade

Intl. Margins

Rest of the world
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Table I.4: The schematic social accounting matrix for the Envisage model (cont.)

VA VA TAX

Activities

Commodities

Dom. Comm.

Imp. Comm.

Tax Dom. Comm.

Tax Imp. Comm.

Value Added

VA tax

Prod. tax

Import tax

Export tax

Households
∑

a NPFr,fp,aXFr,fp,a

Government
∑

a τfr,fp,aNPFr,fp,aXFr,fp,a

Investment

Depreciation

Trade

Intl. Margins

Rest of the world

Table I.4: The schematic social accounting matrix for the Envisage model (cont.)

PTAX EXP TAX IMP TAX

Activities

Commodities

Dom. Comm.

Imp. Comm.

Tax Dom. Comm.

Tax Imp. Comm.

Value Added

VA tax

Prod. tax

Import tax

Export tax

Households

Government
∑

a τpr,aPX r,aXPr,a
∑

j τ
e
r,d,jPEr,d,jWTFr,d,j

∑
j τ

m
s,r,jWPM s,r,jWTFs,r,j

Investment

Depreciation

Trade

Intl. Margins

Rest of the world
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Table I.4: The schematic social accounting matrix for the Envisage model (cont.)

HH GOV INV

Activities

Commodities

Dom. Comm. PDr,iXDr,i,h PDr,iXDr,i,gov PDr,iXDr,i,inv

Imp. Comm. PMT r,iXM r,i,h PMT r,iXM r,i,gov PMTr,iXM r,i,inv

Tax Dom. Comm. τAd
r,i,hPDr,iXDr,i,h τAd

r,i,govPDr,iXDr,i,gov τAd
r,i,invPDr,iXDr,i,inv

Tax Imp. Comm. τAm
r,i,hPMT r,iXM r,i,h τAm

r,i,govPMT r,iXM r,i,gov τAm
r,i,invPMT r,iXM r,i,inv

Value Added

VA tax

Prod. tax

Import tax

Export tax

Households

Government χc
rκ

h
rYH r

Investment Sh
r Sg

r

Depreciation DeprY r

Trade

Intl. Margins

Rest of the world

Table I.4: The schematic social accounting matrix for the Envisage model (cont.)

DEPR TRADE ITT MARG RoW

Activities

Commodities WPEr,d,iWTFr,d,i PPr,iXMGr,i

Dom. Comm.

Imp. Comm.

Tax Dom. Comm.

Tax Imp. Comm.

Value Added

VA tax

Prod. tax

Import tax

Export tax

Households

Government

Investment DeprY r Sf
r

Depreciation

Trade
∑

j WPE r,d,jWTF r,d,j

Intl. Margins
∑

i PPr,iXMGr,i

Rest of the world
∑

j WPM s,r,jWTFs,r,j
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Appendix J

Dimensions of the GTAP database,
release 9.0

Table J.1: Regional dimension of GTAP database

1 AUS Australia

2 NZL New Zealand

3 XOC Rest of Oceania

American Samoa (asm), Cook Islands (cok), Fiji (fji), French Polynesia (pyf), Guam (gum), Kiribati
(kir), Marshall Islands (mhl), Federated States of Micronesia (fsm), Nauru (nau), New Caledonia
(ncl), Norfolk Island (nfk), Northern Mariana Islands (mnp), Niue (niu), Palau (plw), Papua New
Guinea (png), Samoa (wsm), Solomon Islands (slb), Tokelau (tkl), Tonga (ton), Tuvalu (tuv), Van-
uatu (vut), Wallis and Futura Islands (wlf)

4 CHN China

5 HKG Hong Kong (China)

6 JPN Japan

7 KOR Republic of Korea

8 MNG Mongolia

9 TWN Taiwan (China)

10 XEA Rest of East Asia

Macao (mac), North Korea (prk)

12 KHM Cambodia

13 IDN Indonesia

13 IDN Indonesia

14 LAO Lao, PDR

15 MYS Malaysia

16 PHL Philippines

17 SGP Singapore

18 THA Thailand

19 VNM Vietnam

20 XSE Rest of Southeast Asia

Myanmar (mmr), Timor-Leste (tmp)
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Table J.1: Regional dimension of GTAP database (cont.)

21 BGD Bangladesh

22 IND India

23 LKA Sri Lanka

24 NPL Nepal

25 PAK Pakistan

26 XSA Rest of South Asia

Afghanistan (afg), Bhutan (btn), Maldives (mdv)

27 CAN Canada

28 USA United States

29 MEX Mexico

30 XNA Rest of North America

Bermuda (bmu), Greenland (grl), Saint Pierre & Miquelon (spm)

31 ARG Argentina

32 BOL Bolivia

33 BRA Brazil

34 CHL Chile

35 COL Colombia

36 ECU Ecuador

37 PRY Paraguay

38 PER Peru

39 URY Uruguay

40 VEN Venezuela, Republica Bolivariana de

41 XSM Rest of South America

Falkland Islands (flk), French Guiana (guf), Guyana (guy), Suriname (sur)

42 CRI Costa Rica

43 GTM Guatemala

44 HND Honduras

45 NIC Nicaragua

46 PAN Panama

47 SLV El Salvador

48 XCA Rest of Central America

Belize (blz)

49 DOM Dominican Republic

50 JAM Jamaica

51 PRI Puerto Rico

52 TTO Trinidad & Tobago

53 XCB Caribbean

Anguilla (aia), Antigua & Barbuda (atg), Aruba (abw), Bahamas (bhs), Barbados (brb), Cayman
Islands (cym), Cuba (cub), Dominica (dma), Grenada (grd), Guadeloupe (glp), Haiti (hti), Mar-
tinique (mtq), Montserrat (msr), Netherlands Antilles (ant), Saint Kitts & Nevis (kna), Saint Lucia
(lca), Saint Vincent & the Grenadines (vct), Turks and Caicos Islands (tca), British Virgin Islands
(vgb), United States Virgin Islands (vir)
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Table J.1: Regional dimension of GTAP database (cont.)

54 AUT Austria

55 BEL Belgium

56 BGR Bulgaria

57 CYP Cyprus

58 CZE Czech Republic

59 DNK Denmark

60 EST Estonia

61 FIN Finland

62 FRA France

63 DEU Germany

64 GRC Greece

65 HUN Hungary

66 IRL Ireland

67 ITA Italy

68 LVA Latvia

69 LTU Lithuania

70 LUX Luxembourg

71 MLT Malta

72 NLD Netherlands

73 POL Poland

74 PRT Portugal

75 ROU Romania

76 SVK Slovakia

77 SVN Slovenia

78 ESP Spain

79 SWE Sweden

80 GBR United Kingdom

81 NOR Norway

82 CHE Switzerland

83 XEF Rest of European Free Trade Area (EFTA)

Iceland (isl), Liechtenstein (lie)

84 ALB Albania

85 BLR Belarus

86 HRV Croatia

87 RUS Russian Federation

88 UKR Ukraine

89 XEE Rest of Eastern Europe

Moldova (mda)

90 XER Rest of Europe

Andorra (and), Bosnia and Herzegovina (bih), Faroe Islands (fro), Gibraltar (gib), Macedonia (mkd,
former Yugoslav Republic of), Monaco (mco), San Marino (smr), Serbia and Montenegro (scg)
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Table J.1: Regional dimension of GTAP database (cont.)

91 KAZ Kazakhstan

92 KGZ Kyrgyz Republic

93 XSU Rest of Former Soviet Union

Tajikistan (tjk), Turkmenistan (tkm), Uzbekistan (uzb)

94 ARM Armenia

95 AZE Azerbaijan

96 GEO Georgia

97 BHR Bahrain

98 IRN Iran

99 ISR Israel

100 JOR Jordan

101 KWT Kuwait

102 OMN Oman

103 QAT Qatar

104 SAU Saudi Arabia

105 TUR Turkey

106 ARE United Arab Emirates

107 XWS Rest of Western Asia

Iraq (irq), Lebanon (lbn), West Bank and Gaza (pse), Syrian Arab Republic (syr), Republic of Yemen
(yem)

108 EGY Egypt

109 MAR Morocco

110 TUN Tunisia

111 XNF Rest of North Africa

Algeria (dza), Libya (lby)
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Table J.1: Regional dimension of GTAP database (cont.)

112 BEN Benin

113 BFA Burkina Faso

114 CMR Cameroon

115 CIV Côte d’Ivoire

116 GHA Ghana

117 GIN Guinea

118 NGA Nigeria

119 SEN Senegal

120 TGO Togo

121 XWF Rest of Western Africa

Cape Verde (cpv), Gambia, The (gmb), Guinea-Bissau (gnb), Liberia (lbr), Mali (mli), Mauritania
(mrt), Niger (ner), Saint Helena (shn), Sierra Leone (sle)

122 XCF Central Africa

Central African Republic (caf), Chad (tcd), Congo (cog), Equatorial Guinea (gnq), Gabon (gab),
Sao Tome & Principe (stp)

123 XAC South-Central Africa

Angola (ago), Democratic Republic of the Congo (cod)

124 ETH Ethiopia

125 KEN Kenya

126 MDG Madagascar

127 MWI Malawi

128 MUS Mauritius

129 MOZ Mozambique

130 RWA Rwanda

131 TZA Tanzania

132 UGA Uganda

133 ZMB Zambia

134 ZWE Zimbabwe

135 XEC Rest of Eastern Africa

Burundi (bdi), Comoros (com), Djibouti (dji), Eritrea (eri), Mayotte (myt), Réunion (reu), Seychelles
Islands (syc), Somalia (som), Sudan (sdn)

136 BWA Botswana

137 NAM Namibia

138 ZAF South Africa

139 XSS Rest of South African Customs Union

Lesotho (lso), Swaziland (swz)

140 XTW Rest of the World

Antarctica (ata), Bouvet Island (bvt), British Indian Ocean Territory (iot), French Southern Terri-
tories (atf)

129



Table J.2: Commodity dimension of GTAP database

1 PDR Paddy rice

2 WHT Wheat

3 GRO Cereal grains, n.e.s.

4 V F Vegetables and fruits

5 OSD Oil seeds

6 C B Sugar cane and sugar beet

7 PFB Plant-based fibers

8 OCR Crops, n.e.s.

9 CTL Bovine cattle, sheep and goats, horses

10 OAP Animal products n.e.s.

11 RMK Raw milk

12 WOL Wool, silk-worm cocoons

13 FRS Forestry

14 FSH Fishing

15 COA Coal

16 OIL Oil

17 GAS Gas

18 OMN Minerals n.e.s.

19 CMT Bovine cattle, sheep and goat, horse meat products

20 OMT Meat products n.e.s.

21 VOL Vegetable oils and fats

22 MIL Dairy products

23 PCR Processed rice

24 SGR Sugar

25 OFD Food products n.e.s.

26 B T Beverages and tobacco products

27 TEX Textiles

28 WAP Wearing apparel

29 LEA Leather products

30 LUM Wood products

31 PPP Paper products, publishing

32 P C Petroleum, coal products

33 CRP Chemical, rubber, plastic products

34 NMM Mineral products n.e.s.

35 I S Ferrous metals

36 NFM Metals n.e.s.

37 FMP Metal products

38 MVH Motor vehicles and parts

39 OTN Transport equipment n.e.s.

40 ELE Electronic equipment
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Table J.2: Commodity dimension of GTAP database (cont.)

41 OME Machinery and equipment n.e.s.

42 OMF Manufactures n.e.s.

43 ELY Electricity

44 GDT Gas manufacture, distribution

45 WTR Water

46 CNS Construction

47 TRD Trade

48 OTP Transport n.e.s.

49 WTP Sea transport

50 ATP Air transport

51 CMN Communication

52 OFI Financial services n.e.s.

53 ISR Insurance

54 OBS Business services n.e.s.

55 ROS Recreation and other services

56 OSG Public administration and defense, education, health services

57 DWE Dwellings
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