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A B S T R A C T

Land supply elasticities determine the rates of land conversion in global policy models. However, they are only
available for few countries in the world. Therefore, analysts seeking to improve the spatial resolution of their
models are forced to impose regionally homogeneous parameters over highly heterogeneous regions. This article
estimates spatially explicit land supply elasticities using gridded data for the American continent. These esti-
mates reasonably reproduce changes in land use observed at different levels of geographical aggregation across
the continent. Plugging our estimates in a previous analysis of the land-use effects of eliminating global un-
sustainable irrigation, reveals higher pressure to convert land in the ecoregions in the south of the continent that
have experienced most rapid cropland expansion in the recent past.

1. Introduction

Global economic models are an essential tool in the analysis and
design of policies related to the sustainability of global agriculture. For
instance, in the U.S., regulation of the ethanol industry is based on
model predictions of greenhouse gas emissions from domestic and
foreign land use changes caused by biofuel mandates (Babcock, 2009).
Beyond biofuels, global trade models have been used to model the land
use changes associated with technological change (Villoria et al., 2014),
international trade (van Meijl et al., 2006; Verburg et al., 2009), climate
change mitigation (Golub et al., 2009), and agricultural policies
(Eickhout et al., 2007). Yet, although global models are useful to
quantify aggregate outcomes, policy decisions are often made at very
localized levels. Recognizing the interdependence between global dri-
vers of land use change and local stressors and policy responses, there is
a growing demand to increase the spatial resolution of economic
models so that they produce results that are both consistent and accu-
rate at different geographic scales (Verburg et al., 2013).

A crucial obstacle in the development of better models is the paucity
of data and parameters characterizing the heterogeneity of economic
responses across space. This paucity is particularly acute in many de-
veloping and emerging economies, which are precisely the places where

the transformations of the landscape are being most acute. A prime
example of this paucity are the land supply elasticities. The land supply
elasticity is the percentage change in cropland following a one percent
increase in the land rents accruing to agriculture (relative to alternative
uses.) These elasticities determine the amount of natural lands that are
converted into cropland and, by extension, condition model predictions
about environmental metrics linked to land conversion, such as
greenhouse gases emissions, biodiversity losses, or changes in the hy-
drological balance. As economic models increase their spatial resolu-
tion, modelers have to grapple with the fact that the available land
supply elasticities are either calibrated to match country-level historical
patterns of land use changes (Taheripour and Tyner, 2013) or based on
econometric evidence which is heavily focused on the U.S. (Lubowski,
2002; Ahmed et al., 2008).

This article contributes to improve the ability of economic models to
produce policy insights consistent across geographic scales by esti-
mating spatially heterogeneous land supply elasticities. We focus on the
contiguous countries in the Americas, from Canada to Argentina. To
preview our main results, we find that the estimated elasticities rea-
sonably reproduce actual changes in cropland observed by Lark et al.
(2015) and Graesser et al. (2015) in the US and Latin America. We also
find that using these elasticities for policy analysis does indeed provide
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more refined insights than current practice. In particular, the use of our
elasticities for the analysis of the consequences of eliminating un-
sustainable irrigation by Liu et al. (2017) suggests increased pressure in
the Brazilian Cerrado and other ecoregions of South America already
experiencing large pressures for land conversion to agriculture.

The rest of the article is structured as follows. Section 2 discusses the
conceptual and empirical underpinnings of a strategy to spatialize the
country level supply responses combining the standard theory of land
use choice with von Thünen's model of location-determined land rents.
Section 3 presents the regression results and discusses the determinants
of the estimated land supply elasticities. Section 4 compares prediction
of our estimates to actual changes in cropland observed at the level of
ecoregions or subnational units. Section 5 demonstrates the use of our
estimates by plugging them in the gridded model used by Liu et al.
(2017) to explore the consequences of more rational global irrigation
practices. Section 6 concludes the article.

2. Modeling framework and empirical strategy

2.1. Theory

We define a land supply schedule as the functional relationship
between the quantity of land converted from a natural cover (e.g.,
forests) to agriculture and the agricultural land rents. To fix ideas, using
Zi and Ri to denote the share of cropland and land rents in each gridcell
i, the land supply schedule is given by:=Z Rϵ* ,i i i (1)

where ϵ*i is the land supply elasticity in gridcell i. In principle, a re-
gression of Zi on Ri can be used to get an estimate of ϵ*. However,
calculating Ri requires gridcell level input and output prices.
Unfortunately, spatially explicit data on either prices or land rents are
largely unavailable for most countries of the world.

Following Chomitz and Gray (1996), spatially disaggregated land
rents can be approximated using Von Thünen's assumption that spatial
differentials in output and input prices are related solely to differences
in transport costs to major markets.1 This allows mapping (up to a
proportionality factor) land rents in each gridcell onto market access
(Ai) and a vector of k fixed biophysical and socioeconomic covariates
(Sk[i]) that influence land use choices. Formally:∝ = …SR f A k K( , ), 1, , .i i k i[ ] (2)

Substituting (2) in (1) allows expressing the land supply schedules in
terms of market access and land suitability, both of which are readily
available in the gridded maps described in the Data subsection just
below:= SZ f Aϵ ( , ).i i i k i[ ] (3)

A caveat to keep in mind is that in this strategy, the resulting
elasticity is with respect to market access and not with respect to land
rents. Under this modeling framework, these elasticities are propor-
tional to each other, i.e. ∝ϵ ϵ*i i , but without information on land rents
at each gridcell, we are unable to determine the proportionality factor.
Nevertheless, to the extent that the spatial heterogeneity of the land
supply responses can be reasonably considered to be invariant to scale,
the estimated elasticities convey useful information about geographic
patterns of supply response. We empirically validate such usefulness
below, where the changes in cropland implied by our estimates are
compared to observed changes at different levels of geographic ag-
gregation.

Under standard assumptions about producer behavior (in RA S-1),

Expression (3) can be estimated as a fractional logistic regression
model. The estimating equation that we take to data is:

∑= ⎡⎣⎢ + + ⎤⎦⎥Z α α A α S εΛ .i i
k

k k i i0 1 [ ]
(4)

where Λ is the logistic distribution. The elasticity of the changes in
cropland to changes in market access for a specific gridcell is given by:
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where λ is the probability distribution function of the logistic dis-
tribution and Ẑi are fitted cropland shares using the parameter esti-
mates (α̂) from Eq. (4). Note that the partial effects ∂ ∂ −Z Aˆi i 1 are specific
to each gridcell. This is a property of the logistic model that gives us
great flexibility to aggregate the elasticities to different regions or re-
levant units of spatial analysis.

2.2. Data

Table 1 reports the descriptive statistics of all the variables used to
estimate Eq. (4). The dependent variable is the share of each gridcell
that was under cropland circa year 2000. This variable was derived by
Ramankutty et al. (2008) by combining agricultural inventory data and
satellite-derived land cover data.

The market access variable comes directly from Verburg et al.
(2011), who combines spatially explicit global data on physical dis-
tance, network infrastructure, and underlying terrain to develop a high
spatial resolution (1 km2) index of market accessibility determined by
the traveling time from each gridcell to the closest and most influential
market. The influence of the market is given by market size: Large
markets include cities with more than 750,000 inhabitants and mar-
itime ports, while small markets include cities with more than 50,000
inhabitants. The authors assume that large markets are twice as im-
portant as smaller markets, and for each grid cell i in the global map,
they assign a market influence index (Ai) based on traveling time. The
market access index ranges from 0 (inaccessible) to 1 (on a major

Table 1
Descriptive statistics.

Mean s.d. Min Max

Cropland (share of gridcell, 0–1) 0.12 0.22 0.00 1.00
Market access index (0–1) 0.12 0.21 0.00 1.00
Area equipped for irrigation (% of

gridcell)
1.51 6.96 0.00 100.00

Precipitation (mm) 1148.75 788.75 0.00 7513.00
Temperature (°C) 17.06 7.93 −0.78 28.33
Elevation (m) 666.80 801.87 −224.00 5419.00
Soil fertility (IIASA classes) 4.19 2.14 1.00 7.00
Soil carbon density (kg-C/m2) 5.92 2.45 1.33 24.88
Soil pH (0–14) 6.08 1.00 4.20 8.22
Built-up land (% of gridcell) 0.58 3.94 0.00 100.00

Protected areas (binary variable) (% of gridcells under each class)
Unprotected (U) 87
Protected (P) 13

Natural potential vegetation (% of gridcells under each class)
Shrublands (S) 13
Tropical forests (Ft) 28
Temperate forests (FT) 28
Savannas &Grasslands (G) 29
Other 3

Notes: These are summary statistics for the sample of 43,311 observations (out
of a total of 433,096) used to estimate the elasticities in Fig. 3. The soil fertility
constraints categories employed in the regression are: no constraints, slight
constraints, moderate, constrained, severe, very severe, and unsuitable for
cultivation which were obtained from IIASA/2012. Sources and steps taken to
preprocess the data data are in Table S-1 of the RA.

1 Formal development of the model and derivation of the regression equation is in
Section S-1 of the Reviewers’ Appendix to be posted as Supporting On-line Materials upon
publication.
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market), and ranks locations according to traveling time to major cities
(Fig. 1).

Potential vegetation is an important variable in our work because it
identifies the natural land cover from which there is a transition to
cropland. The data on grid cell level potential vegetation are from
Ramankutty and Foley (1999). These data are based on satellite ima-
gery and indicate the dominant vegetation type in each grid cell that
“would likely exist now in the absence of human activities” for both
cultivated and uncultivated grid cells. The original data from
Ramankutty and Foley (1999) divides natural potential vegetation into
15 vegetation types, which we further aggregate into five land covers:
temperate forests, tropical forests, grasslands, shrublands, and a re-
sidual category we label “other” (see Table S-2 in the appendix for the
correspondence between Ramankutty and Foley (1999)'s vegetation
types and our aggregated categories).

We also add other covariates that aim to capture the role of bio-
physical and socioeconomic factors in the cropland share. Biophysical
factors include: soil fertility constraints (seven categories: no con-
straints, slight constraints, moderate, constrained, severe, very severe,
and unsuitable for cultivation) which were obtained from IIASA/2012;
global data on grid cell level soil organic carbon density (kg-C/m2 to 1
m depth), and soil pH (0–14) coming from the SoilData System, which
was developed by the Global Soils Data Task from the International
Geosphere-Biosphere Program (IGBP-1998). These data are based on
statistical resampling of global soil samples (pedon records) that are
consistent with the FAO/UNESCO Soil Digital Map of the World.

The average monthly temperature (°C) and average annual total
precipitation (millimeters/year) over the period 1961–1990 were con-
structed using the data from New et al. (1999). These data are com-
monly used for climate and ecosystem modeling and are obtained by
interpolating weather station data using latitude, longitude, and ele-
vation as predictors. The elevation data (meters above sea level) were
obtained from TerrainBase, a global model of terrain and bathymetry
on a regular 5-min grid documented in NOAA (1995). We also add
dummies for agroecological zones (IIASA/2012; Monfreda et al., 2009)
which capture changes in the length of the growing seasons across the
continent.

The socioeconomic data include area equipped for irrigation (ex-
pressed as % of the area of each 5min grid cell) which comes from
Siebert et al. (2010). These data are based on global census-based in-
ventory data on irrigation sources and are from the national and sub-
national levels. The built-up land data were obtained from SAGE and

are based on observed built-up area density and nighttime lights, which
in turn are used to interpolate urban-area density for those sites in
which only nighttime lights are observed. The 5-min resolution data
layer identifying the protected areas was obtained from van Velthuizen
et al. (2006).

2.3. Methods

Eq. (4) is estimated using the fractional logit estimator of Papke and
Wooldridge (1996). To deal with the potential effects of spatial auto-
correlation on the error term on inference, we followed a three pronged
strategy. First, we used a spatial bootstrap resampling algorithm pro-
posed by Zhu and Morgan (2004) to obtain empirical variance esti-
mators robust to spatial autocorrelation. Second, we included spatial
lags of the independent variables (distance-weighted average value of S
and A in the neighboring grid cells). Third, we estimated the model in
(4) using randomly taken samples of approximately 10% of the data
using a sampling scheme that preserves the gridded structure of the
original data (Cressie, 1993).

The combination of spatial sampling and inclusion of spatial lags of
the explanatory variables have been found an effective way of de-
creasing the degree of spatial autocorrelation in the model residuals
(Robertson et al., 2009). A potential downside of sampling is that it
introduces an additional source of uncertainty as parameter estimates
are likely to vary across samples. In order to capture such uncertainty,
we relied on the recent resampling techniques proposed by Kleiner et al.
(2014). These authors demonstrate that estimation of uncertainty
parameters such as variances or confidence intervals for datasets that
are too large to be handled in standard computers can be achieved by
splitting the total sample into subsamples, which are in turn used to
obtain bootstrap estimates of the uncertainty measures. These measures
are then averaged over the subsamples to obtain improved estimators
on uncertainty. The algorithm used to estimate Eq. (4) is explained in
section S-3 of the RA.

3. Results and discussion

3.1. Regression results

To aid with the interpretation of the large number of partial effects
produced by the logit model, Fig. 2 displays 95% confidence intervals
for these effects averaged across all the gridcells in the estimating
sample (parameter estimates and details on the calculations of the APE
are in RA S-4). Starting with market access, we find that more acces-
sible gridcells are associated with larger shares of cropland. The esti-
mated confidence interval for the average partial effect implies that an
increment in the market access index from, say, 0.7 to 0.8, would
translate into an increase in cropland cover of 0.396–0.527 percent.
This suggests that although statistically significant, on average, market
access have a rather small effect on cropland shares. In reality, the
distribution of the partial effects of market access across the continent is
highly unequal, ranging from nil to about 1.2% (i.e., a 1/10 increment
in the market access index leads to a 1.2% increase in cropland shares.)

The area equipped for irrigation in each gridcell also has a positive,
statistically different from zero, but albeit small effect on cropland
shares; the APE indicates that a unit increase in the area equipped for
irrigation drives up the share of cropland by 0.24–0.28 percentage
points. The estimated effects of precipitation and elevation on cropland
shares are practically indistinguishable from zero. But the effect of
temperature is somehow larger, with a positive linear term and a ne-
gative quadratic term. The average partial effects for the range of
temperatures observed in the data is shown in the lower panel of Fig. 2.
For very low temperatures (in the neighborhood of zero °C), increases in
heat during the growing season increase the share of cropland by
around 5 percent points (95% CI: 4.8–5.8). This partial effect decreases
with higher temperatures, and at approximately 18 °C degree Celsius,

Fig. 1. Market access index decreases (from 1 to 0) as travel time from the Main
City increases. Adapted from Verburg, Ellis, and Letourneau (2011, Fig. 2). At
150 and 250min from the large city are two regional markets.
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higher temperatures reduce the amount of cropland on the average
gridcell.

Soil fertility constraints are also significant determinants of the
share of land under cropland. Gridcells with less fertile soils are asso-
ciated with less cropland as a unit increase in the soil fertility scale
reduces the cropland share by a 95% CI with bounds −1.8 and −1.6
percent points. Similarly, a unitary increase in soil carbon increases the
share of cropland by 0.8-0.9 (95% CI) percentage points. The acidity of
the soil (pH) has a positive linear effect as well as a quadratic negative
effects, and the APE in the lower panel of Fig. 2 suggests that the
marginal effect is highest just below neutrality (pH=7) and declines as
the soils become more basic. This finding is in line with the agronomic
and global ecology literature, which indicates optimal growing condi-
tions in soils with a pH between 6.6 and 7.0 (Ramankutty et al., 2002).

After correcting for accessibility, a greater share of built-up land is
associated with a lower cropland share (a 1% increase in built-up land
decreases the share of cropland by around 0.3% with a 95% CI: −0.32,
−0.25), which probably reflects the fact that urban uses are more
profitable. We also find that protected areas tend to have lower shares
of cropland, around 7% as indicated by a 95% CI with bounds −7.42
and 6.67, a finding consistent with those of Blankespoor et al. (2017),
who find that protected areas are associated with reduced deforesta-
tion.

3.2. Land supply elasticities: market access vs. land suitability

Using the parameter estimates just discussed, we use expression (5)
to calculate estimates of the elasticity of cropland shares to changes in
market access for each one of the approximately 43,300 gridcells in
each of the 25 samples and their respective bootstrap samples (Fig. 3a).
In this section we explore the determinants of these elasticities as well
as their ability to reproduce historical patterns of land use change in the
region.

The variation of the land supply elasticities across gridcells is en-
tirely explained by the logit scale factors, + +λ α α A α S[ log( )]i i i0 1 2 in
Eq. (5), which in turn depend on market access and cropland suitability.

The issue we explore next is the relative importance of these two
sources of variation in determining the elasticity of land supply. For
this, we recomputed the scale factors by setting the market access index
equal to zero (i.e., for each gridcell we computed +λ α α S[ log( )]i i0 2 .)
These recomputed scale factors capture how much of the partial effect
of market access is due to land suitability for agriculture while ab-
stracting from the effects of market access.

The scale factors with and without market access as well as their
ratio are shown in Fig. 3b, c and d. Notice that for the vast majority of
the continent the ratios in Fig. 3d range from 0.6 to 1, indicating that
for these gridcells, land suitability drives from 60% to 100% of the land
supply response to a change in market access. The implication of this is
that in two gridcells with identical market access, the same change in
market access will cause a larger amount of land expansion in the
gridcell more suitable for agriculture. As a corollary, to the extent that
an increase in land profitability can be thought of as an improvement in
market access, as proposed by Eq. (2), then, keeping other things equal,
gridcells with low suitability would need a higher overall increase in
profitability in order to justify their incorporation into production.

4. Validation of regional patterns of land supply response

Two recent studies, Lark et al. (2015) in the US, and Graesser et al.
(2015) in Latin America, offer enough spatial detail for validating the
spatial patterns of land supply responses discussed above. Graesser
et al. (2015) report that from 2001 to 2013, cropland expanded by 44
million hectares (Mha) in Latin America. Approximately 75% of this
expansion occurred in ecoregions in the southern part of the continent:
the Cerrado in Brazil (≈10Mha), the Humid Pampas in Argentina
(≈6Mha), the Alto Paraná Atlantic forest that extends from southern
Brazil to eastern Paraguay and northern Argentina (≈5Mha), the Dry
Chaco in eastern Bolivia, northern Argentina, part of Brazil, and wes-
tern Paraguay (≈2Mha); the Uruguayan Savanna (≈2Mha); and the
Araucarian moist forests in southern Brazil and Northern Argentina
(≈2Mha). Graesser et al. (2015) also report significant expansion of
cropland in Mexico (≈8Mha), and in the Llanos, shared by Colombia

Fig. 2. Point estimates and 95% confidence
intervals of average partial effects (APE). The
y-axes indicates percentage points increase in
cropland shares. APE for variables with quad-
ratic terms (temperature and soil pH) are
shown for the in-sample range of each variable.
The scale factor of the displayed partial effects
were obtained by averaging the logit prob-
ability density functions evaluated at each
gridcell across all the gridcells in the sample
(see Table S-3 in the RA for algebraic expres-
sions of the APE). Standard errors were calcu-
lated using the Delta method (Greene, 2008).
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and Venezuela (≈0.4Mha). The question we ask is to what extent the
estimated elasticities predict changes such as these, at the level of
ecoregions.

As explained above, the estimated land supply elasticities to market
access are conceptually proportional to to elasticities to land rents, but
given the lack of data on gridded land rents, the exact proportionality is
unknown. As a simplifying alternative we assume a proportionality
factor that is common to all the countries in which there was significant
changes in cropland. This proportionality factor equals 0.9, and is the
value of a back-of-the-envelope regional land supply elasticity calcu-
lated using FAOSTAT data on cropland and implied land rents (see RA

S-5 for calibration of these elasticities). The scaling up of the elasticities
is a linear transformations that preserves the spatial distribution of the
original estimates. The changes in cropland during 2001–2013 are
obtained by multiplying the scaled elasticities by 19%, which is the
cumulative growth in regional changes in implicit land rents from 1999
to 2011, obtained from FAOSTAT (see RA S-5).

As displayed in Fig. 4, the estimated elasticities produce a pattern of
land conversion at the level of ecoregions that—with the exception of
the Araucaria and Mato Grosso forests—is consistent with the changes
observed by Graesser et al. (2015). The Spearman ranking correlation
between our estimates and Graesser et al. (2015)'s observations is 0.53

Fig. 3. Land supply responses: market access vs. land suitability. Scale factors are the probability density function of the logistic model (see expression (5)) evaluated
at each grid cell.
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(p < 0.05) and the Pearson correlation coefficient is 0.52 (p < 0.05).
When the Araucaria and Mato Grosso forests are excluded, these cor-
relations climb up to 0.77 (p < 0.05) and 0.76 (p < 0.05). These
correlations are invariant to the size of the elasticity used to elicit the
changes in land use; their size suggest that land suitability and acces-
sibility go a long way in explaining actual changes in land use in Latin
America.

This comparison is purposely focused on eliciting the geographic
pattern of land use conversion, not the changes in physical area. This
focus obeys to the fact that we rely on few determinants of land use at a
fixed point in time. Drivers such as road construction and voluntary
commitments to avoid sourcing from deforestation hotspots, among
many others, likely overwhelm the role of land suitability and exacer-
bate the effects of market access on determining the land supply elas-
ticities (Soares-Filho et al., 2004; Noojipady et al., 2017) as well as land
returns within these regions. Using region-specific scalars and changes
in land rents would probably help to match the observed changes in
terms of physical area; however, this would confound the size of the
effects with their location. As a consequence, using a single regional
land elasticity coupled with a regionally uniform change in land rents is
an effective way to discern the geographic pattern of land supply re-
sponses, but inadequate to get accurate predictions of the actual
changes.

We undertake a similar evaluation of our elasticities for the U.S. In
this case, we compare the geographic pattern of land supply response
predicted by our elasticities with the gross changes in cropland reported
by Lark et al. (2015) in their study of cropland changes during
2008–2012. In this case, their of Lark et al. (2015) is available to us at
the gridcell level. We focus only on the gridcells with positive net
conversion. This allows comparing the accuracy of our estimates in
reproducing patterns of land supply response at different scales of in-
terest. We follow a similar procedure as above. First, scale up the
elasticities so the average elasticity for the US is 0.03, which is the land
supply elasticity estimated by Barr et al. (2011, Table 3) for the same
period. The scaled elasticities are then multiplied by an increase in land
rents of 0.58 taken also from Barr et al. (2011, Table 3).

We then aggregate the changes in cropland to different subnational
and ecological aggregates. Table 2 shows the results. The Spearman
rank correlation coefficient for the whole US is 0.58 (p < 0.01). When
we aggregate at the state level (48 states), we observe a similar rank
correlation (0.58, p < 0.01) indicating that the estimated elasticities
rank states similarly to the ranking reported by Lark et al. (2015). At
the even more granular level of counties (3077 units), the rank corre-
lation is still statistically significant and positive (0.42, p < 0.01). At
the level of ecoregions (71 units), the rank correlation is 0.87
(p < 0.01); the increase in accuracy at the ecoregion level is likely
associated with the fact that ecoregions encompass relatively home-
geneous areas in terms of land suitability for agriculture, and therefore
naturally match the variables used to identify the geographic patterns

of land supply response.
While the Spearman correlations measure the degree of coincidence

in ranking, the Pearson correlations measure the correlation between
the magnitude of the changes. For the US as a whole as well as for the
3077 counties, the magnitudes of cropland conversion predicted by the
estimated elasticities are uncorrelated with the changes reported by
Lark et al. (2015). This indicates that at the level of administrative
units, our estimates are reasonable predictors of where cropland ex-
pansion takes place but not of how much cropland is supplied from
natural lands. However, at the level of ecoregions the Pearson corre-
lation coefficient is 0.57 (p < 0.01) strengthening the argument above
about the natural congruency between ecoregions and our estimates.

As in the case of Latin America, it is important to keep in mind that
these estimates assume a uniform increase in land rents across the vast
geography of the U.S., an assumption that may be at odds with the fact
that the US displays many different types of agriculture. Moreover,
there are well documented processes that are not included in our fra-
mework and that have large effects on land use decisions such as farm
income and resource conservation policies (Lubowski et al., 2008; Barr
et al., 2011). Finally, a main driver of land expansion in the US during
this period was the location of ethanol refineries (Wright et al., 2017).
Most of the ethanol refineries are concentrated in few states in the mid-
west and central plains.2 As shown in Table 2, when these states are
excluded from the sample, both the Spearman and Pearson correlations
increase at every level of administrative unit (country, states and
counties), in some cases substantially so. This suggests that future

Fig. 4. Predicted vs. observed increases in
cropland (relative to cropland in 2000) by
ecoregion in Latin America. Observed changes
are the number of hectares converted to crop-
land from non cropland from 2001 to 2013 as
reported by Graesser et al. (2015, Fig. S4), di-
vided by the cropland hectares circa 2000 from
Ramankutty et al. (2008).

Table 2
Spearman (rank) and Pearson Correlation coefficients between predicted and
observed changes in land use at different level of geographic aggregation in the
U.S.

Level Units Spearman Pearson

Country 1 0.58 0.17
Country (NH)a 1 0.60 0.23
State 48 0.58 0.47
Statea 40 0.62 0.69
County 3077 0.42 0.23
Countya 2360 0.53 0.34
Ecoregion 71 0.87 0.57
Ecoregiona 70 0.87 0.55

Notes: Gross cropland expansion in gridcells with positive net change from Lark
et al. (2015).

a Excludes Iowa, Nebraska, Minnesota, Illinois, South Dakota, Kansas,
Indiana, and Wisconsin, where 75% of US ethanol refineries are located (ORNL,
2014).

2 According to the ORNL (2014), by 2014, 75% of ethanol refineries were in Iowa,
Nebraska, Minnesota, Illinois, South Dakota, Kansas, Indiana, and Wisconsin.
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refinements of this work will benefit from including data on the loca-
tion of biofuel refineries and other processing plants in the market ac-
cess measures. Meanwhile, readily available indicators of land use
choice and suitability can be used to improve the representation of land
supply responses at several scales below the country level.

5. Revisiting the land use impacts of restricting unsustainable
irrigation in the Americas

Researchers and policy analysts from many disciplines are increas-
ingly interested in modeling frameworks that reconcile the fact that
macro-level policies are often felt very differently at the local level due
to the large variation in physical, biophysical, and socio-economic
characteristics across space (Verburg et al., 2013). Ignoring the spatial
heterogeneity of policy effects can result in misleading findings, ren-
dering the simulation of policies of little use to decision making (Dinar,
2014; Liu et al., 2016).

In this section we explore the additional insights that the estimated
site-specific elasticities could provide when incorporated in the evol-
ving economic models that seek to reconcile the effects of global drivers
and local policies across different spatial scales by revisiting a sudy in
the frontier of this literature. We do this by revisiting the work of Liu
et al. (2017) who analyse the land use and food security effects of
pursuing globally sustainable irrigation.

The work of Liu et al. (2017) is an example of the frontier of global
economic models for policy analysis. Three features of this work are
particularly interesting to us. First, Liu et al. (2017) employ a publicly

available,3 grid-resolving model nicknamed SIMPLE-G—a multi-region,
partial equilibrium model of gridded cropland use at a resolution of
30min with crop production, consumption and trade determined at the
level of regions (e.g., Latin America)—, that readily accommodates the
resolution of our estimated elasticities. Second, in SIMPLE-G, the po-
tential for cropland to expand is a key factor determining the outcomes
of restricting irrigation. The more elastic is the supply of cropland, the
larger the possibility expanding land area to compensate production
losses from restricting intensification through the rationalization of ir-
rigation. Finally, while the core of SIMPLE-G is spatially explicit, most
of the behavioral parameters, including the land supply elasticity, are
calibrated at the regional level due to lack of information at a finer
scale. Replacing regional parameters with grid-specific ones provides an
opportunity to learn the value of improving spatial heterogeneity of the
model.

Liu et al. (2017) consider irrigation to be unsustainable if water
withdrawals exceed 20% of total annual water available for irrigation.
The authors run a suite of experiments that trace the changes in global
rain fed and irrigated cropland once that regions with unsustainable
irrigation are forced to use no more than 20% of their total water
available for irrigation. We focus in their experiment a (Liu et al., 2017,
Table 1) in which the total factor productivities of irrigated and non-

Fig. 5. Relative change in cropland area under two cases: uniform land supply elasticity (top) and spatially heterogeneous elasticity (bottom). Compare absolute
change of cropland conversion (top) caused by eliminating unsustainable irrigation and the associated difference in carbon emissions (bottom). The difference is
relative to results generated by the model with heterogeneous parameter. Green color indicates the model with uniform parameters may overestimate net cropland
conversion or carbon emissions, while red color indicates the opposite. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

3 https://mygeohub.org/resources/simpleg. Other models with gridcell resolution
exist, e.g., MagPIE (Lotze-Campen et al., 2008) and GLOBIOM (Valin et al., 2013), but are
not publicly available for this type of exercise.
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irrigated crop sectors are assumed to grow in tandem till 2050 without
structural market adaptations (business as usual scenario). The authors
find that the pursuit of sustainable use of water limits the yield boosting
effect of irrigation, and therefore, results in cropland expansion into
both rain-fed areas and irrigated area with no stress of water scarcity.
Globally, the induced land conversion leads to 0.871 GtC of carbon
emissions, which amounts to 9% of global carbon emissions in 2014.

In the present extension, we rerun the same experiment, except that
land supply elasticity is updated to vary by grid-cell. Fig. 5 presents the
relative change of cropland area under two compared cases uniform
and heterogeneous land supply elasticities. In contrast to the fairly
homogeneous change in the former, the land conversion in the latter is
mostly concentrated in the east of the US, the west coast of the Andean
states, and the Cerrado in Brazil. In terms of absolute values (Fig. 5c),
the uniform parameter model may over-predict land conversion in the
Corn Belt and the Caribbean, but under-predict land conversion on the
fringe of Corn Belt, the central plains of Canada, and the southern
Cerrado (Brazil-Argentina) and the Argentinian Pampas.

Using gridded carbon stock data (in C/ha) from West et al. (2010),
we translate the area of conversion to net carbon emissions in Fig. 5d.
The model with uniform regional land supply elasticities tends to
overestimate carbon emissions in many parts of the Amazon and the
Corn Belt, but underestimate those in the east of the US and the
Highland plateau in Brazil. At the regional level, the model updated
with the spatially heterogeneous supply responses predicts 95,000
hectares more (about 20% more) of land conversion than the original
model, as a result of restricting unsustainable irrigation. Tables 3 and
4show that the discrepancy mainly arises from Brazil, Canada and the
US. However, the associated carbon emissions predicted by the two
models are quite similar. In other words, although the updated model
predicts more cropland conversion, the expansion is not taking place in
locations where carbon stock is high as suggested by the other model.

This comparison demonstrates the additional richness in the out-
comes of irrigation conservation that is overlooked if the spatial
nuances in agricultural extensification are ignored. Liu et al. (2017)
demonstrate the potential trade-offs between different sustainable de-
velopment goals: the pursuit of sustainable irrigation may erode other
development and environmental goals by raising food prices and in-
creasing greenhouse gas emissions. A key contribution of their work is
to link localized decisions of water management to global outcomes.
Our revision of their work suggests that a refined spatial representation
of production behavior regarding land conversion allows for sharper

conclusions about where changes are more likely to occur. In the spe-
cific case discussed above, rationalizing worldwide irrigation is likely to
exert even more pressure in ecosystems in the southern part of the
continent that are already experiencing high rates of land conversion
discussed in the previous section. Being able to better understand the
interactions between better global water management and localized
land conversion should improve the process of both local and global
policy formulation.

6. Conclusions

Recognizing the interdependence of global and local changes there
is a growing demand to increase the spatial resolution of economic
models. A key limitation for these models is the lack on data and
parameters at disaggregated levels. We contribute to these models by
estimating a key parameter, namely, the land supply elasticities. Due to
data limitations, the identification of these elasticities comes from
cross-sectional variation in cropland shares, market access, and land
suitability across the American continent. Unavoidably, this leaves out
many key determinants of land use change such as changes in policy
objectives associated with economic development and environmental
protection, land governance, and other factors. Nevertheless, land use
predictions of our estimates aggregated to either subnational adminis-
trative or ecological regions, compare favorably to observed recent
changes in land use in the US and Latin America by Lark et al. (2015)
and Graesser et al. (2015). This suggests that the proposed framework
and estimates can be used to spatialize land supply elasticities observed
at the national level, increasing the accuracy of spatially explicit eco-
nomic models. We offer an example of this by embedding our estimates
into a gridded model of the global economy used to explore the con-
sequences of eliminating worldwide unsustainable irrigation practices.
Our results demonstrate that although the aggregated outcomes are
relatively insensitive to increased spatial resolution, the model with
heterogeneous parameters indicates that the brunt of the land expan-
sion from less wasteful global irrigation practices is precisely in the
Brazilian Cerrado and Argentinian Pampas, places that have been under
great pressure for cropland expansion during the last decade.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.landusepol.2018.04.010.
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