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Abstract: This document provides a complete model specification for the
Mitigation, Adaptation and New Technologies Applied General Equilibrium
(Manage) Model. Manage is a (recursive) dynamic single country computable
general equilibrium (CGE) model designed to focus on energy, emissions and cli-
mate change. In addition to the standard features of a single country CGE model,
the Manage model includes a detailed energy specification that allows for capi-
tal/labor/energy substitution in production, intra-fuel energy substitution across all
demand agents, and a multi-output multi-input production structure. Furthermore,
Manage is a dynamic model, using by and large the neo-classical growth specifica-
tion. Labor growth is exogenous. Capital accumulation derives from savings/invest-
ment decisions. The model allows for a wide-range of productivity assumptions that
include autonomous improvements in energy efficiency that can differ across agents
and energy carriers. Finally, the model has a vintage structure for capital that allows
for putty/semi-putty assumptions with sluggish mobility of installed capital.
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Chapter 1

Introduction

The Mitigation, Adaptation and New Technologies Applied General Equilibrium (Manage) Model is a (recursive)
dynamic single country computable general equilibrium (CGE) model designed to focus on energy, emissions and
climate change. In addition to the standard features of a single country CGE model, the Manage model includes a
detailed energy specification that allows for capital/labor/energy substitution in production, intra-fuel energy sub-
stitution across all demand agents, and a multi-output multi-input production structure. Furthermore, Manage is a
dynamic model, using by and large the neo-classical growth specification. Labor growth is exogenous. Capital accu-
mulation derives from savings/investment decisions. The model allows for a wide-range of productivity assumptions
that include autonomous improvements in energy efficiency that can differ across agents and energy carriers. Finally,
the model has a vintage structure for capital that allows for putty/semi-putty assumptions with sluggish mobility of
installed capital.

The model is sufficiently flexible that it can be calibrated to a relatively large number of Social Accounting Matri-
ces (SAM), with recent applications available for Morocco and Nigeria. This latest version of the model incorporates
recently developed price/volume splits of the energy sectors and CO2 emissions. The model is implemented in the
GAMS software and an aggregation facility is used as a front-end to the model to allow for full aggregation flexibility.

This document is an update of the version 1 and 2a of Manage. The key changes include a fuller specification
of trade and transport margins, additional indirect taxes, the incorporation of enterprises and a wide variety of
monetary transfers—both domestic and international and in the latest version energy volumes and carbon emissions.
Version 2.0c includes a new factor of production that is called fixed capital in the sense that it is sector-specific and
is not incorporated with the standard capital that is assumed either partially or fully mobile across sectors. The
sector-specific capital can be thought of as special equipment that has no economic use in another sector such as a
water dam to produce hydro-electricity or solar panels. Version 2.0f has implemented capital/skill substitutability/-
complementarity in the production structure. Version 2.0g includes a sector-specific natural resource factor and a
price pass-through equation for imports.
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Chapter 2

MANAGE in a nutshell

The Manage model is a recursive dynamic computable general equilibrium (CGE) model. Each year of a scenario
is solved as a static equilibrium, with dynamic equations linking exogenous factors (such as employment growth and
capital accumulation) across years with, in addition, update equations for productivity factors. Each static equilibria
relies on a relatively standard set of equation specifications.

Production is modeled using a series of nested constant-elasticity-of-substitution (CES) functions designed to
capture the substitutions and complements across the different inputs—notably capital and labor, but also with a
focus on energy as energy policies are one of the key objectives of the Manage model.1 Energy is assumed to be
a near-complement with capital in the short-run, but a substitute in the long-run. Thus rising energy prices tend
to lead to rising production costs in the short-run when substitution is low, but a long-run response would lead to
energy-saving technologies that dampen the cost-push factor. This feature of the model is embodied in a vintage
capital structure that captures the semi-putty/putty relations across inputs with more elastic long-run behavior as
compared to the short-run. The model also allows for both multi-input and multi-output production. The former,
for example, would allow for electricity supply to be produced by multiple activities—thermal, hydro, solar and
other renewable forms of electricity production. The latter allows for a single activity to produce more than one
product—for example oil seed crushing produces both vegetable oils and oil cakes (for feed), or corn-based ethanol
production can produce both ethanol and distillers dry grains soluble (DDGS) that can be used as a feed substitute.

Labor and capital income is largely allocated to households with pass-through accounts to enterprises. Govern-
ment revenue is derived from both direct and indirect taxes.

Household demand is modeled using the constant-differences-in-elasticity (CDE) demand function that is the
standard utility function used in the GTAP model. The model allows for a different specification of demanded
commodities (indexed by k) from supplied commodities (indexed by i). A transition matrix approach is used to
convert consumer goods to supplied goods that also relies on a nested CES approach. The transition matrix is largely
diagonal in the current version with consumed commodities directly mapped to supplied commodities. Energy demand
is bundled into a single commodity and disaggregated by energy type using a CES structure that allows for inter-fuel
substitution. Other final demand is handled similarly, though the aggregate expenditure function is a CES function
rather than the CDE.

Goods are evaluated at basic prices with tax wedges. The model incorporates trade and transport margins that
add an additional wedge between basic prices and end-user prices. The trade and transport margins are differentiated
across transport nodes—farm/factory gate to domestic markets and the border (for exports), and from port to end-
user (for imports).

Import demand is modeled using the ubiquitous Armington assumption, i.e. goods with the same nomenclature
are differentiated by region of origin. This allows for imperfect substitution between domestically produced goods
and imported goods. The level of the CES elasticity determines the degree of substitutability across regions of
origin. Domestic production is analogously differentiated by region of destination using the constant-elasticity-
of-transformation (CET) function. The ability of producers to switch between domestic and foreign markets is
determined by the level of the CET elasticity. The model allows for perfect transformation in which case the law-of-
one price must hold.

Market equilibrium for domestically produced goods sold domestically is assumed through market clearing prices.
By default, the small country assumption is assumed for export and import prices and thus they are exogenous, i.e.
export levels do not influence the price received by exporters and import demand does not influence (CIF) import

1 See Figure 3.1.
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prices. The model does allow for implementation of an export demand schedule and an import supply schedule in
which case the terms-of-trade would be endogenously determined.

The current version of the model assumes market clearing wages on the labor markets with the possibility of
an upward sloping labor supply schedule and sluggish mobility of labor across sectors. Introduction of more labor
market segmentation (for example rural versus urban) and some form of wage rigidity could be readily implemented.

Closure of the capital markets depends on the nature of the simulation. In comparative static simulations, capital
markets behave similar to labor markets with an upward sloping supply schedule for aggregate capital supply and
inter-sectoral capital mobility that depends on a CET transformation elasticity. In dynamic simulations, new capital,
i.e. that generated by recent investments, is allocated across sectors so as to equalize the rate of return across sectors.
Old capital remains installed in its original sector unless the sector is in decline. A sector in decline is one in which
potential supply, as measured by the capital/output ratio, exceeds ex post demand. This can occur from a variety
of shocks—for example a negative export demand shock, or a government policy (e.g. a tax on energy) that lowers
demand for a specific commodity. If a sector is in decline, it releases its installed capital using an upward sloping
supply schedule and its ex post return on capital is less than the economy-wide average. Old capital in expanding
sectors earns the same rate of return as new capital.

The dynamics of MANAGE is composed of three elements. Population and labor stock growth are exogenous—the
latter is often equated to the growth of the working age population. The aggregate capital stock grows according to
the overall level of saving (enterprises, households, public and foreign), but will also be influenced by the investment
price index and the rate of depreciation. The third component relies on productivity assumptions. By default,
labor productivity in services is assumed (or calibrated dynamically to achieve a per capita growth target). Labor
productivity in other sectors is calculated relative to labor productivity in services using a linear schedule that allows
for both multiplicative and additive components. The purpose of this is to calibrate inter-sectoral labor productivity
to historical trends (either domestic or international).

3



Chapter 3

Model specification

3.1 Model dimensions

The coding of the model is relatively independent of the dimensionality of the SAM and other functional dimensions of
the data. Table 3.1 provides a listing of the main sets and subsets of the model. The input SAM has a dimensionality
of is × is and most of the remaining sets and subsets derive from is. Sectors have three classifications: a, i, and
k, respectively (production) activities, marketed commodities and consumed commodities. In a traditional model
the three sets are identical. In the Manage model, with its multi-input multi-output production structure, output
from activities (a) is combined with imports to supply (or ’produce’) commodities (i). This allows, for example, to
have multiple activities produce a single commodity (for example electricity), and to have single activities produce
multiple commodities (e.g. sugar producing sugar, ethanol, rum and even power). In addition, Manage allows for
commodities in final demand (indexed by k) to differ from marketed commodities (i). A consumer-based ’make’
or transition matrix maps consumed commodities to supplied commodities. This allows for more realistic demand
behavior in the context of an energy model. For example, household demand for transportation services can be a
combination of demand for fuel and automobiles. If the price of fuel goes up, the combined demand for fuel/autos
would decline. It also allows for specific treatment of the demand for fuel and intra-fuel substitutability.

The next sections of the document describe the different block or modules of the model using the rather traditional
circular flow scheme of economics, i.e. starting with production and factor incomes, income distribution, demand,
trade, and macro closure. At the end, there is a discussion on the model dynamics.

3.2 Production block

The Manage production structure relies on a set of nested constant-elasticity-of-substitution (CES) structures.1 The
purpose of the nested CES structure is to replicate the substitution and complementary relations across the various
inputs to production. The standard CES nest has intermediate inputs and a value added bundle as a fixed share
of output. Manage deviates from this standard to allow for capital/energy substitution and complementarity (see
figure 1). Production in the dynamic version of the model is based on a vintage structure of capital, indexed by v. In
the standard version, there are two vintages—Old and New, where New is capital equipment that is newly installed
at the beginning of the period and Old capital is capital greater than a year old. The vintage structure impacts model
results through two channels. First, it is typically assumed that Old capital has lower substitution elasticities than
New capital. A higher savings rates will lead to a higher share of New capital and thus greater overall flexibility.
The second channel is through the allocation of capital across sectors. New capital is assumed to be perfectly mobile
across sectors. Old capital is sluggish and released using an upward sloping supply curve. In sectors where demand
is declining, the return to capital will be less than the economy-wide average. This is explained in greater detail in
the market equilibrium section.

Most of the equations in the production structure are indexed by v, i.e. the capital vintage. The exceptions
are those where it is assumed that the further decomposition of a bundle are no longer vintage specific—such as the
demand for non-energy intermediate inputs. Each production activity is indexed by a, and is different from the index
of produced commodities, i (allowing for the combination of outputs from different activities into a single produced

1 Some of the key analytical properties of the CES, and its related constant-elasticity-of-transformation (CET)
function, are fully described in Appendix A.
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Table 3.1: Sets used in model definition

Set Description

is Full set of SAM Accounts
aa(is) Set of Armington agents—includes all production activities and final demand
a(aa) Set of production activities
oa(aa) Other Armington agents—mostly final demand accounts
fd(oa) Final demand accounts (excludes the trade and transport margin accounts)
h(oa) Household accounts
f (oa) Other final demand accounts
i(is) Commodities
e(i) Energy commodities
in(i) Non-energy commodities
k Consumed commodities
nrg(k) The energy bundle in consumed commodities
inst(is) Institutions (for transfers)
fp(is) Factors of production
l(fp) Labor categories
ul(l) Unskilled labor types
sl(k) Skilled labor types
v Vintages (Old and New)

good, for example electricity). All the equations also allow for a variety of efficiency factors that are used for the
dynamic version of the model.

The top level bundle is composed of net output, XPN , and the sector specific natural resource, XNR for those
sectors that are subject to a natural resource—typically sectors such as fisheries, forestry and the mining and extractive
sectors. Equations (3.1) and (3.2) are derived demands for the natural resource factor and the net output bundle,
respectively. The former is aggregated over vintages and the latter is defined by vintage, where XPv represents
output by vintage by each activity. The natural resource equation allows for technological change embodied in the
λ parameter. Equation (3.3) defines the vintage-specific unit cost, PXv . Almost all CES price equations are based
on the dual cost function instead of the aggregate cost or revenue formulation. The unit cost function includes the
effects of productivity improvement. Equation (3.4) determines the aggregate unit cost, PX , the weighted average of
the vintage-specific unit costs with the weights given by the vintage-specific output levels. Equation (3.5) determines
the final market price for output, PP , that is equal to the unit cost augmented by the output tax and/or subsidy,
respectively τp and τs. The equivalence of the tax-adjusted unit cost to the output price is an implication of assuming
constant-returns-to-scale technology and perfect competition. The production price can also be adjusted by a volume
only tax (or an excise tax), represented by τx.

XNRa =
∑
v

αnr
a,v(λnr

a )σ
nr
a,v−1

(
PXva,v

PNRa

)σnr
a,v

XPva,v (3.1)

XPN a,v = αpn
a,v

(
PXva,v

PPN a,v

)σnr
a,v

XPva,v (3.2)

PXva,v =

[
αnr
a,v

(
PNRa

λnr
a

)1−σnr
a,v

+ αpn
a,v (PPN a,v)1−σnr

a,v

]1/(1−σnr
a,v)

(3.3)

PXa =

∑
v

PXva,v XPva,v

XPa
(3.4)

PPa = (1 + τpa + τsa) PXa + τxa (3.5)
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Equations (3.6) and (3.7) are derived demands for two bundles, one designated as aggregate value added, VA,
though it also includes energy demand that is linked to capital, and aggregate intermediate demand, ND , a bundle
that excludes energy. Both are shares of net output by vintage, XPN , with the shares being price sensitive with
respect to the ratio of the vintage—specific unit cost, PPN , and the component prices, respectively PVA and PND .
The equations allow for technological change embodied in the λ parameters that are allowed to be node-specific. For
uniform technological change, the two parameters can be subject to the same percentage change. Equation (3.8)
defines the vintage-specific unit cost, PPN .

NDa =
∑
v

αnd
a,v

(
λn
a,v

)σp
a,v−1

(
PPN a,v

PNDa

)σp
a,v

XPN a,v (3.6)

VAa = αva
a,v

(
λv
a,v

)σp
a,v−1

(
PPN a,v

PVAa

)σp
a,v

XPN a,v (3.7)

PPN a,v =

[
αnd
a,v

(
PNDa

λn
a,v

)1−σp
a,v

+ αva
a,v

(
PVAa

λv
a,v

)1−σp
a,v

]1/(1−σp
a,v)

(3.8)

The subsequent production nest decomposes the VA bundle (value added and energy) into aggregate demand for
unskilled labor2, LAB1 , demand for land (where appropriate), Landd , and the capital/skill/energy bundle, KSE .3

The key substitution elasticity is given by σv, which in a standard model represents capital/labor substitution.
An elasticity of 1 implies a Cobb-Douglas technology.4 Equation (3.9) determines the demand for unskilled labor
bundle, LAB1 . Equation (3.10) determines the demand for land, Landd .5 Equation (3.11) determines demand for
the capital/skill/energy bundle, KSE . The final equation in this nest, equation (3.12) defines the unit price of the
value added cum energy bundle, PVA, by vintage.

LAB1a,v = αl1
a,v

(
PVAa,v

PLAB1a,v

)σv
a,v

VAa,v (3.9)

Landd
a =

∑
v

αlnd
a,v

(
λta
)σv

a,v−1
(

PVAa,v

PLandp
a

)σv
a,v

VAa,v (3.10)

KSEa,v = αkse
a,v

(
PVAa,v

PKSEa,v

)σv
a,v

VAa,v (3.11)

PVAa,v =

[
αl1
a,vPLAB1

1−σv
a,v

a,v + αlnd
a,v

(
PLandp

a

λta

)1−σv
a,v

+ αkse
a,vPKSE

1−σv
a,v

a,v

]1/(1−σv
a,v)

(3.12)

The next nest is a decomposition of the capital/skill/energy bundle, KSE , into demand for the capital/skill
bundle, KSK , and an energy bundle, XNRGp . Equation (3.13) defines the demand for the capital/skill bundle, KSK .
The substitution elasticity is given by σk . Equation (3.14) determines the demand for the energy bundle, XNRGp .
Equation (3.15) defines the price of the KSE bundle, PKSE .

KSKa,v = αksk
a,v

(
PKSEa,v

PKSKa,v

)σk
a,v

KSEa,v (3.13)

XNRGp
a,v = αe

a,v

(
PKSEa,v

PNRGp
a,v

)σk
a,v

KSEa,v (3.14)

PSKEa,v =
[
αksk
a,v (PKSKa,v )1−σk

a,v + αe
a,v

(
PNRGp

a,v

)1−σk
a,v

]1/(1−σk
a,v)

(3.15)

2 The description of skilled and unskilled labor is somewhat arbitrary and left up to the user at runtime. The user
defines a subset of labor, ul , that will be associated with the LAB1 bundle, called the unskilled labor bundle.
All other labor types will be assigned to the subset, sl , and called skilled labor and associated with the LAB2
bundle. The user can decide to put all labor types, or any combination thereof, in any one of the two subsets.

3 The model differentiates between the producers’ cost of factors and the market returns to factors. The former is
equal to the market return adjusted for sector and factor-specific ad valorem taxes (or subsidies). The relevant
variables for the factor cost for producers will have a superscript ’p’.

4 In the GAMS implementation of the model, a Cobb-Douglas technology is approximated by an elasticity of 1.01.
5 Note that the demand for land is summed over all vintages as there is no subsequent decomposition with respect

to vintage.
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The capital/skill bundle, KSK , is decomposed into demand for a capital bundle by vintage6, KB , and a component
that represents demand for the skilled labor bundle, LAB2 . Equations (3.16) through (3.18) determine respectively
the sectoral demand for the capital bundle, KB , the skilled labor bundle, LAB2 , and the price of the capital/skill
bundle, PKSK .

KBa,v = αkb
a,v

(
PKSKa,v

PKBa,v

)σks
a,v

KSKa,v (3.16)

LAB2 = αl2
a,v

(
PKSKa,v

PLAB2a,v

)σks
a,v

KSKa,v (3.17)

PKSKa,v =
[
αk
a,v (PKBa,v)1−σks

a,v + αl2
a,v (PLAB2a,v)1−σks

a,v

]1/(1−σks
a,v)

(3.18)

The capital bundle, KB , is decomposed into demand for ’mobile’ capital by vintage, K d, and a component
that represents demand for sector-specific capital, KF . For the moment, the latter should be used sparingly as it
is not fully integrated into the investment module and is simply an exogenous factor. It is normally set to zero in
all activities. Equations (3.19) through (3.21) determine respectively the sectoral demand for ’mobile’ capital, K d,
sector specific capital, KF , and the price of the capital bundle, PKB . The model allows for a tax/subsidy on the use
of the fixed capital, captured by the variable τ kf .

K d
a,v = αk

a,v

(
λk
a,v

)σkb
a,v−1

(
PKBa,v

PK p
a,v

)σkb
a,v

KBa,v (3.19)

KFa =
∑
v

αkff
a,v

(
λkf
a,v

)σkb
a,v−1

(
PKBa,v

(1 + τ kf
a )RKFa

)σkb
a,v

KBa,v (3.20)

PKBa,v =

αk
a,v

(
PK p

a,v

λk
a,v

)1−σkb
a,v

+ αkff
a,v

(
(1 + τ kf

a )RKFa

λkf
a,v

)1−σkb
a,v

1/(1−σkb
a,v)

(3.21)

The two aggregate labor bundles, LAB1 and LAB2 , are broken out into labor demand by skill level, Ld . The
inter-labor substitution elasticity is given by σul for the unskilled bundle and σsl for the skilled bundle. Labor
demand is added up over all vintages, equation (3.22), and the demand is adjusted by labor productivity factors.
Equation (3.23) defines the productivity adjusted cost of aggregate unskilled labor and Equation (3.24) defines the
productivity adjusted cost of aggregate skilled labor

Ld
a,l =


∑
v

αl
a,l,v

(
λla,l

)σul
a,v−1

(
PLAB1a,v

W p
a,l

)σul
a,v

LAB1a,v if l ∈ ul

∑
v

αl
a,l,v

(
λla,l

)σsl
a,v−1

(
PLAB2a,v

W p
a,l

)σsl
a,v

LAB2a,v if l ∈ sl

(3.22)

PLAB1a,v =

∑
ul

αl
a,ul,v

(
W p
a,ul

λla,ul

)1−σul
a,v

1/(1−σul
a,v)

(3.23)

PLAB2a,v =

∑
sl

αl
a,sl,v

(
W p
a,sl

λla,sl

)1−σsl
a,v

1/(1−σsl
a,v)

(3.24)

The final two nodes in the production nest decompose respectively aggregate demand for non-fuel intermediate
goods, ND , and the energy bundle, XNRGp . Normally we assume a standard Leontief technology for the former,
but the model allows for substitution across non-energy inputs.7 Equation (3.25) determines the demand for the
(Armington) intermediate demand for non-fuel inputs, XAin , with the substitution elasticity given by σn. The
relevant price is the Armington price, PA, which in the current version of the model is assumed to be uniform

6 [NEW:26-Mar-2018] A new factor of production has been introduced that represents a sector-specific capital.
For the moment, it is not vintage specific. It is bundled with ’mobile capital.

7 The model would need to be adapted to allow for specific substitution across selected inputs—for example across
different animal feed products.
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economy-wide, i.e. all agents have identical preferences for domestic versus imported goods, but that does allow for
different end-user prices using a tax/subsidy instrument, and as well a carbon tax that can similarly be user-specific.
This is detailed further below. The variable PAF represents the end-user price of the Armington good that is inclusive
of the normal indirect tax and potentially of the carbon tax.8 Equation (3.26) provides the price of the aggregate
ND bundle, where the set nnrg , covers all non-energy intermediate inputs. Equations (3.27) and (3.28) perform a
similar decomposition for the energy bundle, determining the demand for specific energy carriers (indexed by e).9

The inter-energy substitution elasticity is given by σe.10 These equations also include energy efficiency parameters
that are specific to the sector of activity, energy carrier and vintage.

XAin,a = αio
in,a

(
PNDa

χPA
in PAFin,a

)σn
a

NDa (3.25)

PNDa =

[ ∑
in∈nnrg

αio
in,a

(
χPA
in PAFin,a

)1−σn
a

]1/(1−σn
a )

(3.26)

XAd
e,a =

∑
v

αep
e,a,v

(
λee,a,v

)σe
a,v−1

(
PNRGp

a,v

PAFe,a

)σe
a,v

XNRGp
a,v (3.27)

PNRGp
a,v =

[∑
e

αep
e,a,vχ

PA
e

(
PAF e,a

λee,a,v

)1−σe
a,v

]1/(1−σe
a,v)

(3.28)

This ends the description of the production structure, though there is a further decomposition of XAin , i.e. the
non-fuels intermediate Armington demand, and the energy bundle into imported and domestic components.

The next section of the supply block describes the multi-input/multi-output specification of the model. The
multi-input part of the model allows for the aggregation of multiple activities into a single marketed good. This
specification is useful for example in the electricity sector where the final output is the combination of multiple
electricity production activities—hydro, coal-powered, renewables, etc. The specification allows for various levels of
substitution—including the law-of-one-price that assumes that output from all activities is homogeneous and the unit
cost of production is identical across activities. The multi-output part of the model allows for joint production, for
example producing ethanol and DDGS from ethanol production.

Activity a can therefore produce a suite of commodities indexed by i, hence an output at this level is indexed
by both a and i, Xa,i. This is implemented using a CET structure with the possibility of infinite transformation.
Equation (3.29) defines the supply of Xa,i emanating from activity a (or XPa), where the law-of-one- price holds
in the case of infinite transformation. Equation (3.30) represents the zero profit condition, or the revenue balance
for the multi-output production function. Again, the χus parameters are used as normalization factors so that the
price variables are initialized at 1, but whenever used, need to be scaled by the relevant χ to preserve the correct
accounting. Xa,i = γua,i

(
χus
a,iPa,i

PPa

)ωp
a

XPa if ωpa 6=∞

χus
a,iPa,i = PPa if ωpa =∞

(3.29)

PPaXPa =
∑

{i|χus
a,i 6=0}

χus
a,iPa,iXa,i (3.30)

In the next step, multiple streams of output can be combined into a single supplied commodity, XSi , with a
CES-aggregator. The specification allows for homogeneous goods, for example electricity—in which case the cost
of each component must be equal.11 Equation (3.31) determines the demand for produced commodity X. In the
case of a finite elasticity it is a CES formulation. With an infinite substitution elasticity, the law-of-one price must
hold, i.e. the producer price of each component must be equalized in efficiency units. Equation (3.32) determines

8 To enhance the numerical properties of the model, the basic Armington price is normalized to 1, even in the
case of correct price/volume splits. The parameter χ is used to convert the normalized price to the correct level,
for example, dollar (or local currency) per liter, or, in terms of any other energy volume used by the model, for
example million or thousand tons of oil equivalent (MTOE or TOE).

9 There is a slight difference in the treatment of the price normalization factor for the energy bundles. The share
parameters αep incorporate the price normalization factor directly.

10 The energy decomposition herein is described with a single nest. More complex substitution patterns can be
specified by adding additional nests—for example having an electricity bundle, a liquid fuels bundle, etc.

11 Subject perhaps to an efficiency differential.
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Figure 3.1: Production nest

the equilibrium condition in the form of the cost function expression, or (primal) volume equality if the law-of-one
price holds.12 The formulas allow for shifts in preferences via the λs parameter.13 One possible preference shift can
emerge from a cost neutral shift in the preference for one component of the CES function (see Appendix A).Xa,i = αua,i

(
λud
a,i

)σs
i−1

(
PSi

χud
a,iPa,i

)σs
i

XSi if σsi 6=∞

χud
a,iPa,i = PSi if σsi =∞

(3.31)


PSi =

∑
a

αua,i

(
χud
a,iPa,i

λud
a,i

)1−σs
i

1/(1−σs
i )

if σsi 6=∞

XSi =
∑
a

Xa,i if σsi =∞
(3.32)

3.3 Income block

In the current version of the model, households derive their income from factor payments.14 Equation (3.33) defines
gross profits, i.e. total capital remuneration including net of taxes returns to sector specific capital. Equation (3.34)

12 The model explicitly assumes supply/demand equilibrium for the variable X, thus the superscripts d and s are
suppressed as well as the equilibrium condition.

13 The preference shift parameter is new to Version 2.0c.
14 The latest version of the model includes enterprises and a variety of domestic and international transfers.
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defines gross income for household h, YH . Each term represents the share of total after-tax remuneration accruing to
household ’h’. The first term on the right-hand side includes aggregate wage payments by skill level, where the matrix
of coefficients χl distributes the payment from skill level l to household h. The second term represents the after tax
distribution of land income. The third term represents aggregate payment to capital services and is distributed to
households using the coefficient matrix χk. The fourth term represents the after tax distribution of natural resource
income. The fifth term is the sum of all transfers from institutions to households. Equation (3.35) defines household
direct tax payment, Tax h—it is a linear line with potentially a non-zero intercept. The variable τd represents the
marginal tax rate for household h and φd is the intercept of the tax schedule. Both tax parameters are multiplied by
an adjustment factor that is set to 1 in the base year. Depending on the closure rule, one of the adjustment factors
may be endogenous to achieve some target. For example, one closure may fix the fiscal deficit of the government.
One way to achieve the fiscal target is to endogenize the tax schedule—using either a uniform shift on the marginal
tax rate or a uniform shift on the intercept (assuming the base year intercept is different from zero for at least one
household). Equation (3.36) determines the average savings propensity out of after-tax income, aps. It is simply
constant relative to the bench-mark level with the possibility of a uniform shifter depending on the closure rule. For
example, to achieve a targeted level of investment, the parameter χs may be endogenized. Equation (3.37) specifies
the total level of transfers from households—it is simply a share of total income. Equation (3.38) determines available
household income for purchases of goods and services, YF . Finally, equation (3.39) determines household savings,
S h .

KAPY =
∑
a

∑
v

PKa,vK
d
a,v +

∑
a

RKFn
aKFa (3.33)

YHh =
(

1− κll
)∑

l

χlh,l
∑
a

Wa,lL
d
a,l +

(
1− κt

)
χth
∑
a

PLandaXLandd
a

+
(

1− κk
)
χkhKAPY + (1− κnr )χnrh

∑
a

PNRSaXNRS d
a

+
∑
inst

Transfersh,inst

(3.34)

Tax h
h = χmτdhYHh + χaφdh (3.35)

apsh = χsapsh,0 (3.36)

totTrh = χtotTrh YHh (3.37)

YFh = (1− apsh)
(

YHh − totTrh − Tax h
h

)
(3.38)

S h
h = apsh

(
YHh − totTrh − Tax h

h

)
(3.39)

Government revenues have been divided into separate streams in order to simplify the notation: subsidies and
taxes on production (”ptx”), value added taxes (”otx”), import and export taxes (”mtx”)15, agent-specific sales taxes
and subsidies (”atx”), factor taxes and subsidies (”vtx”), and direct taxes (”dtx”).16 The production tax stream
includes taxes/subsidies on the use of the sector specific factor. Equations 3.40 through 3.46 describe the different
tax streams. (N.B. not all variables have been defined yet.) Equation (3.45) defines the level of carbon tax revenue.
The separate variables and parameters will be described in the emissions module below.

YGptx =
∑
a

(τpa + τsa) PXaXPa +
∑
a

τ kf
a RKFaKFa (3.40)

YGotx =
∑
i

[
τ va,d
i

(
χPD
i PDi + PMARGiζ

d
i

)
XD i + τ va,m

i PMiXMi

]
(3.41)

YGmtx =
∑
i

(PMD i − ER · PWM i) (XMi + STBm
i ) +

∑
i

τei χ
PE
i PEiXEi (3.42)

YGatx =
∑
aa

∑
i

(
τai,aa + ςai,aa

)
χPA
i PAiXAi,aa (3.43)

15 The formulation for import tariff revenues allows for imperfect price pass-through in which case the government
absorbs the difference between the border price and the (tariff-inclusive) end-user price.

16 Agent-specific subsidies were added with version 2.0c.
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YGvtx =
∑
l

∑
a

τ la,lWa,l L
d
a,l +

∑
a

τ taPLandaLandd
a

+
∑
v

∑
a

τka,vPKa,v K d
a,v +

∑
a

τnr
a PNRSaXNRS d

a

(3.44)

YGctx =
∑
em

∑
aa

∑
i

τ em
em χ

Emi
em,i,aaρ

Emi
em,i,aaϕ

Emi
em,i,aaXAi,aa (3.45)

YGdtx =
∑

h

Tax h
h +

∑
entr

Tax entr
entr + Tax gov

+ κll
∑
l

∑
a

Wa,lL
d
a,l + κt

∑
a

PLandaXLandd
a

+ κkKAPY + κnr
∑
a

PNRSaXNRS d
a

+
∑
a κ

kf
a RKFaKFa

(3.46)

The next block of equations determines domestic closure for the government accounts. Equation (3.47) defines the
total revenues for the government. There are three components—aggregate taxes, transfers from domestic and foreign
institutions and the residual share of profits.17 Equation (3.48) determines direct taxes on government operations
[!!!need to identify]. Equation (3.49) determines total public transfers as a share of government revenues. Nominal
government saving, S g , is the difference between government revenues (summed over the index g) and the total
of government current expenditures—direct taxes, transfers and public expenditures on goods and services, YFgov ,
see equation (3.50). Equation (3.51) defines real government savings, RS g , using a yet-to-be-defined economy-wide
deflator, PNUM .

YGOV =
∑
g

YGg +
∑
inst

Transfersgov,inst + KAPY

(
1−

∑
h

χk
h −

∑
entr

χk
entr

)
(3.47)

Tax gov = κgov YGOV (3.48)

totTrgov = χtotTr
gov YGOV (3.49)

S g =
∑
g

YGg − Tax gov − totTrgov −YFgov (3.50)

RS g = S g/PNUM (3.51)

The next set of equations relates to the enterprise accounts that are essentially pass-through accounts with
minimal behavior. Equation (3.52) defines enterprise incomes—a share of total profits plus transfers. Equation (3.53)
determines direct taxes on enterprises. Equation (3.54) determines enterprise savings that feeds into the investment
stream. And equation (3.55) determines aggregate enterprise transfers as a residual after tax and savings.

YEntrentr = χkentr KAPY +
∑
inst

Transfersentr,inst (3.52)

Tax entr
entr = κentr YEntrentr (3.53)

S entr
entr = αsentr

(
YEntrentr − Tax entr

entr

)
(3.54)

totTrentr = YEntrentr − Tax entr
entr − S entr

entr (3.55)

The final equations in the income block allocate transfers across institutions—handling separately the domestic
and incoming foreign transfers. Equation (3.56) allocates the total amount allocated for transfers by domestic agents
(indexed by dinst) using a matrix of share coefficients, χtr . Foreign transfers are exogenous and fixed in foreign
currency terms, equation (3.57). They are converted to domestic currency units by the exchange rate, ER. The final
equation is the ubiquitous investment equals savings equation (3.58). Nominal investment, YFInv , is equal to the
sum of savings from households, enterprises, government and from abroad, adjusted for the value of stock building.18

Transfers inst,dinst = χtr
inst,dinst totTrdinst (3.56)

17 An alternative would be to identify public profit shares by sector.
18 N.B. The value of imports of stocks is the tariff-inclusive domestic price-excluding margin and other indirect tax

wedges.
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Transfers inst,row = ERTransfersROW
inst,row (3.57)

YFInv =
∑
h

Shh +
∑
entr

Sentr
entr + Sg + ER · Sf

−
∑
i

[
χPS
i PSiSTBd

i + PM d
i STBm

i

] (3.58)

3.4 Demand block

The household demand system is derived from the constant-difference-in-elasticity (CDE) utility function—the stan-
dard demand system in the GTAP model. It is based on an implicitly additive utility function and can collapse to
a CES utility function under certain conditions. It provides a fair amount of flexibility and is typically calibrated
to external estimates of both income and own-price elasticities. The function and some of its key characteristics are
derived more fully in Appendix B.

To simplify implementation, Equation (3.59) defines an auxiliary variable, ZCons, that simplifies the remaining
expressions for the CDE. Equation (3.60) defines the budget share, skf , for household h for consumer good k, and
is based on the auxiliary variable ZCons. Equation (3.61) represents aggregate demand for good k by household h,
XKF , using the standard expression for budget shares.19 The model allows for a different classification of consumer
goods and producer goods. A ’make’ matrix—described below—converts consumer goods to producer goods. The
utility function is based on personal utility. Equation (3.62) determines household utility (on a per capita basis),
u, and users the auxiliary variable ZCons to simplify the expression of the equation. Equation (3.63) defines the
household specific consumer price index, PF , and is a weighted sum of consumer goods prices.

ZConsh,k = αkf
h,kbh,ku

eh,kbh,k

h

(
PKFh,k

YFhPoph

)bh,k

(3.59)

skf
h,k =

ZConsh,k∑
k′

ZConsh,k′
(3.60)

XKFh,k =
skf
h,k

PKFh,k
YFh (3.61)

∑
k

ZConsh,k
bh,k

≡ 1 (3.62)

PFh =
∑
k

skf
h,kPKFh,k (3.63)

The next set of equations decomposes household demand defined as consumed goods into supplied (or more
accurately, Armington) goods. A transition matrix approach is used where each consumed good is composed of one
or more supplied goods and combined using a CES aggregator.20 Each consumer good could also have its own energy
bundle—with different demand shares across energy.21 A nested CES structure is deployed to convert consumed
goods (k) to supplied goods (i) across households (h). The top nest decomposes demand for good k into a non-energy
bundle, XKF NNRG , and an energy bundle, XKF NRG—see respectively equations (3.64) and (3.65). Equation (3.66)
defines the price of consumed good k for household h, PKF .

XKF NNRG
h,k = αNNRG

h,k XKFh,k

(
PKFh,k

PKF NNRG
h,k

)σa
h,k

(3.64)

19 N.B. That population drops out of each side of the equation since both XKF and YF are defined in aggregate
terms, not per capita.

20 In most cases, the transition matrix is almost diagonal—i.e. each consumed good is mapped to a single produced
good. The exceptions are the energy goods that are aggregated together into a single energy bundle that allows
for substitution across the different energy carriers. A satellite dataset would be needed to calibrate a more
complex transition matrix.

21 For example, a transportation bundle is likely to be dominated by liquid fuel demand, whereas demand for heat
is likely to be dominated by electricity and natural gas.
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XKF NRG
h,k = αNRG

h,k XKFh,k

(
PKFh,k

PKF NRG
h,k

)σa
h,k

(3.65)

PKFh,k =

[
αNNRG
h,k

(
PKF NNRG

h,k

)1−σa
h,k

+ αNRG
h,k

(
PKF NRG

h,k

)1−σa
h,k

]1/(1−σa
h,k)

(3.66)

The next step decomposes the aggregate non-energy bundle into Armington demand for produced (and imported)
goods indexed by in. The demand is summed across all k consumer goods—equation (3.67). Equation (3.68) performs
the same function for the energy bundle, but also allows for energy efficiency improvement though the λ parameter
that is specific to each household (h), each consumer good (k) and for each energy carrier (e). Thus one could assume
more rapid improvement in energy efficiency in household demand for residential energy use than in transportation
demand, or vice versa. Finally, equations (3.69) and (3.70) determine the price of the respective non energy and
energy bundles for each agent and each consumed commodity.

XAin,h =
∑
k

αfh,in,k XKF NNRG
h,k

(
PKF NNRG

h,k

χPA
in PAF in,h

)σca
h,k

(3.67)

XAe,h =
∑
k

αfh,e,k
XKF NRG

h,k

λeh
h,e,k

(
λeh

h,e,k PKF NRG
h,k

χPA
e PAF e,h

)σce
h,k

(3.68)

PKF NNRG
h,k =

[∑
in

αf
h,in,k

(
χPA

in PAF in,h

)1−σca
h,k

]1/(1−σca
h,k)

(3.69)

PKF NRG
h,k =

∑
e

αf
h,e,k

(
χPA

e PAF e,h

λeh
h,e,k

)1−σce
h,k

1/(1−σce
h,k)

(3.70)

Demand decomposition of the other final demand accounts (indexed by f) uses a similar transition matrix/nested
CES approach as household demand. Equations (3.71) and (3.72) determine respectively demand for the non-
energy and energy bundles for each other final demand agent, f , where XF , the aggregate volume of expenditure, is
determined using specific closure rules. Equation (3.73) reflects the standard price aggregation function determining
PF .

XF NNRG
f = αNNRG

f XF f

(
PF f

PF NNRG
f

)σf
f

(3.71)

XF NRG
f = αNRG

f XF f

(
PF f

PF NRG
f

)σf
f

(3.72)

PF f =

[
αNNRG
f

(
PF NNRG

f

)1−σf
f

+ αNRG
f

(
PF NRG

f

)1−σf
f

]1/(1−σf
f

)

(3.73)

The next block of equations determine the demand for Armington goods for agents f . Equations (3.74) and (3.75)
determine respectively the demand for Armington goods—partitioned into non-energy and energy commodities. And
equations (3.76) and (3.77) determine respectively the price of the non-energy and energy bundles.

XAin,f = αff ,inXF NNRG
f

(
PF NNRG

f

χPA
in PAF in,f

)σfa
f

(3.74)

XAe,f = αff ,e
XF NRG

f

λef
f ,e

(
λef

f ,ePF NRG
f

χPA
e PAF e,f

)σfe
h,k

(3.75)

PF NNRG
f =

[∑
in

αf
f ,in

(
χPA

in PAF in,f

)1−σfa
f

]1/(1−σfa
f

)

(3.76)

PF NRG
f =

∑
e

αf
f ,e

(
χPA

e PAF e,f

λef
f ,e

)1−σfe
f

1/(1−σfe
f

)

(3.77)
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The final set of equations in the demand block refer to the demand for goods and services for the trade and
transport margins. The model has three different nodes for margins: 1) from farm or factory gate to domestic
markets (’d’); 2) from farm or factor gate to the domestic border for exports (’e’); and 3) from the border to domestic
markets for imports (’m’). Though the wedges are different for each of the three nodes—the unit cost of the margin
is the same across all nodes (i.e. the ’production’ function of the trade and transport margins is identical across all
nodes). For each commodity i, the unit cost of the margin is PMARGi irrespective of the node. Equation (3.78)
expresses the demand for margin services for good j across all three nodes, XMARG. This demand generates demand
for ’Armington’ goods, where a CES cost function is assumed—equation (3.79).22 The cost of the trade margins is
reflected in the price, PMARG, and determined in equation (3.80). The differential cost structure for margins across
goods will reflect the different energy intensities as reflected in the cost shares (and the indirect demand for energy
through the input output table).

XMARGj = ζdj XDj + ζejXEj + ζmj XMi j (3.78)

XAi,j = αmrg
i,j XMARGj

(
PMARGj

χPA
i PAi

)σmg
j

(3.79)

PMARGj =

[∑
i

αmrg
i,j

(
χPA

i PAi

)1−σmg
j

]1/(1−σmg
j )

(3.80)

The final equation in the demand block, equation (3.81), reflects the price/volume split for the final demand
agents. What the equation ’determines’ will be reflected by specific closure rules to be discussed below.

YFoa = PFoaXFoa (3.81)

3.5 Trade block

3.5.1 Demand for domestic and imported goods

The equations above have determined completely the so-called Armington demand for goods across all agents, XA,
that include activities (a), private or consumer demand (h), other final demand (f) and for margin delivery (j). The
union of these three sets is the set aa. All Armington agents are assumed to have the same preference function for
domestic and imported goods.23 It is also assumed that the Armington good, for each commodity i, is homogeneous
across agents, and can therefore be aggregated in volume terms.

Equations (3.82) through (3.84) define the different import prices used in the model. The CIF price is reflected
in the variable PWM , that is multiplied by the exchange rate (ER). The domestic price, PM d , is then the CIF price,
in local currency, adjusted by the import tariff—equation (3.82). The model allows for imperfect price pass-through
as reflected in the parameter π. The default value for π is 1, i.e. perfect price pass-through.24 The tariff revenue
equation, (3.42), has been modified under the assumption that the government subsidizes imports in the event of less
than perfect price pass-through. The import price is then augmented by the domestic trade and transport margins
to become PM —equation (3.83). Finally, a sales or value added tax is added to the import price to become the
agents’ price of imports, PM a—equation (3.84). It is this price that will be reflected in the substitution decision
between imports and domestic goods. Equation (3.85) determines the agents’ price of domestically produced goods,
PDa , equal to the producer price, PD , augmented by trade and transport margins and the sales or value added tax.

PM d
i = ER(1 + τmi ) [πiPWM i + (1− πi)PWM i,0] (3.82)

PMi = PM d
i + PMARGiζ

m
i (3.83)

χPMa
i PM a

i = PMi(1 + τ va,m
i ) (3.84)

χPDa
i PDa

i =
(

PDi + PMARGiζ
d
i

) (
1 + τ va,d

i

)
(3.85)

22 Margin services are not associated with specific indirect taxes—though this could be changed in future revisions.
23 Some national SAM’s allow for the decomposition of Armington demand into its domestic and import component

by agent.
24 [NEW] The price pass-through parameter was introduced into the model 25-May-2018.
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Equation (3.86) defines aggregate Armington demand, XAT . It is the sum across all agents of their Armington
demand. As described above, the decomposition of the Armington aggregate, XAT , is done at the national level.
Aggregate national demand for domestic goods, XD , is then a fraction of XAT , with the fraction sensitive to the
relative price of domestic goods, PDa , to the Armington good, PA—as shown in equation (3.87)). The key parameter,
known as the Armington substitution elasticity, is σm. Equation (3.88) determines the demand for imports, XM .
Equation (3.89) defines the aggregate (or national) price of the aggregate Armington good, PA. Equation (3.90)
defines the end-user price of the Armington good. In the absence of a carbon tax, the end-user price is equal to the
basic Armington price adjusted by a user-specific sales tax, τa, and/or subsidy, ςa. The carbon tax is composed of
several parts. The parameter ρem measures the quantity of emissions per unit of absorption. It can be adjusted over
time by the factor χem . The carbon tax is given by τ em and is in local currency per unit of emission. The parameter
ϕem allows for variable participation rates across end-users. If it is set to 1, the participant is subject to the full tax.
If it is 0, the end-user is exempt from the carbon tax. The carbon tax is scaled by the Armington price scale factor
for accounting purposes.

XATi =
∑
aa

XAi,aa (3.86)

XDd
i = αdi

(
γdi PAi

PDa
i

)σm
i

XATi (3.87)

XMi = αmi

(
γmi PAi

PM a
i

)σm
i

XATi (3.88)

PAi =

[
αdi

(
γdi PDa

i

)1−σm
i

+ αmi (γmi PM a
i )1−σm

i

]1/(1−σm
i )

(3.89)

PAFi,aa =
(
1 + τai,aa + ςai,aa

)
PAi +

1

χPA
i

∑
em

τ em
em χ

em
emi,aaρ

em
em,i,aaϕ

em
em,i,aa (3.90)

3.5.2 Export supply

Analogous to the Armington specification described above, the model allows for imperfect transformation of output
across markets of destination—domestic and for export. A constant-elasticity-of-transformation (CET) structure is
implemented. Domestic output is allocated between the domestic market and the export market. Infinite transfor-
mation is allowed in which case the CET first order conditions are replaced by the law-of-one-price.

Equations (3.91) and (3.92) represent the derived supply for domestic, XDs , and export, XE s , markets respec-
tively. With finite transformation, these conditions are the standard CET first order conditions based on supply (less
stock building). With perfect transformation, each is replaced with the law-of-one-price whereby the domestic, PD ,
and export, PE , producer prices are set equal to the aggregate supply price, PS . Equation (3.93) represents the
market equilibrium for supply. With perfect transformation (where all prices are uniform) domestic supply is equal
to the sum of supply to the various markets.

γXD
i PDi = PSi if σxi =∞

XDs
i = γdi

(
γXD
i PDi

PSi

)σx
i

[XSi − STBi ] if σxi 6=∞
(3.91)


γXE
i PEi = PSi if σxi =∞

XE s
i = γei

(
γXE
i PEi

PSi

)σx
i

[XSi − STBi ] if σxi 6=∞
(3.92)

XSi = XDs
i + XE s

i + STBi if σxi =∞

PSi =
[
γdi
(
γXD
i PDi

)1+σx
i + γei

(
γXE
i PEi

)1+σx
i

]1/(1+σx
i )

if σxi 6=∞
(3.93)

Equation (3.94) defines the domestic producer price of exports, PE . The FOB price of exports is PWE , and is
multiplied by ER to convert into local currency terms. There are two wedges that affect the domestic producer price
of exports—an export tax and the domestic trade and transport margin. The model allows for both a downward
sloping export demand curve and an upward sloping import supply curve. Equation (3.95) reflects the export demand
curve, with the possibility of an infinite demand elasticity in which case the FOB price of exports is fully exogenous.
The variable PWE RoW represents a price index of competitive exports and is normally exogenous. If the export
demand elasticity is finite, export demand declines as the price of home country exports increases. Equation (3.96)
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provides an analogous treatment of import supply. Import supply would tend to increase with a rise in the price of
imports into the home country (for example with a reduction in import tariffs). With an infinite supply elasticity,
the price of imports is fixed at PWM RoW .

χPE
i PEi (1 + τei ) + PMARGiζ

e
i = ERχPWE

i PWEi (3.94)
PWEi = γPWE

i PWE RoW
i if σxi =∞

XE d
i = χei

(
γPWE
i PWE RoW

i

PWEi

)ηei
if ηei 6=∞

(3.95)


PWMi = PWM RoW

i if ωmi =∞

XM s
i + STBm

i = χmi

(
PWMi

PWM RoW
i

)ωm
i

if ωmi 6=∞
(3.96)

There are potentially three goods market equilibrium conditions:

XDs
i = XDd

i

XE s
i = XE d

i

XM s
i = XM d

i

These equations are substituted away and the model implementation only carries a single variable for each of the
equilibrium variables (XD , XE , and XM ).

3.6 Factor market closure

3.6.1 Labor market equilibrium

The allocation of labor across activities uses a nested CET structure. First, an aggregate labor supply schedule for
each skill type, LT s , is specified as an upward-sloping supply curve—allowing for both extremes, a vertical curve with
employment fixed, and a horizontal curve with wages tied to a price index. Equation (3.97) implements the national
labor supply curve with the supply elasticity given by εl. The national or average wage is given by AW . Aggregate
labor supply is then segmented into different markets, indexed by z, using a top level adjusted CET function. A
standard model of labor market segmentation divides labor markets into two zones—rural and urban, or alternatively
agriculture and non-agriculture. The adjusted CET function allows for mobility across labor markets in such a way
that labor additivity is preserved.25 The specification allows for perfect mobility in which case the average wage in
each zone is equated up to a scalar, i.e. wages move in unison. A second level adjusted CET is used to allocate labor
across activities within each zone—again allowing for perfect mobility.

Equation (3.98) determines aggregate labor supply for each zone. labor supply, LZ s , where the parameter ωl

determines the degree of mobility across labor markets. In the case of perfect mobility, the wage in each zone moves
in unison with the average wage index (not the average wage as in the standard CET). Equation (3.99) determines
the national wage index, AW n , that is used for the allocation of labor across zones. In the standard CET, the wage
index and the aggregate wage, AW , are identical. To allow for the case of perfect mobility, the wage index equation is
replaced with the additivity condition that holds for both perfect and partial mobility. Equation (3.100) determines
the aggregate, or average wage rate, using the standard accounting identities.LT s

l = χls
l

(
AWl

PNUM

)εll
if εll 6=∞

AWl = PNUM if εll =∞
(3.97)

LZ s
z ,l = γlz

z,l

(
ZWz ,l

φlz
z,lAW n

l

)ωl
l

LT s
l if ωll 6=∞

ZWz ,l = φlz
z,lAW n

l if ωll =∞

(3.98)

25 Unlike the standard CET that does not preserve additivity. See the annex for more details on the adjusted CET.
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AW n
l =

∑
z

γlz
z,l

(
ZWz ,l

φlz
z,l

)ωl
l

1/ωl
l

⇐⇒ LT s
l =

∑
z

LZ s
z ,l (3.99)

AWl LT s
l =

∑
z

ZWz ,l LZ s
z ,l (3.100)

The second level adjusted CET allocates labor across activities within each zone. Equation (3.101) determines
sectoral supply of labor to each activity, Ls. In the case of perfect mobility, the sectoral wage moves in unison with
the wage index for the zone (not the average wage of the zone as in the standard CET). Equation (3.102) determines
the aggregate wage index, ZW n within each zone. It is replaced with the equivalent expression of volume additivity
that holds for both partial and perfect mobility. Equation (3.103) determines the aggregate wage in each zone, ZW .Ls

a,l = γl
a,l

(
Wa,l

φla,lZW n
z ,l

)ωlz
z,l

LZ s
z ,l if ωlz

l 6=∞ and a ∈ z

Wa,l = φla,lZW n
z ,l if ωlz

z,l =∞ and a ∈ z

(3.101)

ZW n
z ,l =

∑
a∈z

γl
a,l

(
Wa,l

φl
a,l

)ωlz
z,l

1/ωlz
z,l

⇐⇒ LZ s
z ,l =

∑
a∈z

Ls
a,l (3.102)

ZWz ,l LZ s
z ,l =

∑
a∈z

Wa,l L
s
a,l (3.103)

Equation (3.104) is the equilibrium condition on labor markets where sectoral demand for labor equals sectoral
labor supply. Equation (3.105) converts the market price of labor to the user-cost of labor by sector and skill.

Ls
a,l = Ld

a,l (3.104)

W p
a,l =

(
1 + τ la,l

)
Wa,l (3.105)

3.6.2 Land market equilibrium

The model has a single national market for land. Aggregate land supply, TLand , is specified as an upward-sloping
supply curve—allowing for both extremes, a vertical curve with total land fixed, and a horizontal curve with the
return to land tied to a price index. Equation (3.106) implements the national land supply curve with the supply
elasticity given by εt. The national or average price of land is given by PTLand . National supply is allocated to
each sector under the assumption of perfect or sluggish mobility. In the case of perfect mobility, the return to land is
uniform across sectors and moves in sync with the national price of land. With sluggish mobility, the return to land
in each sector is tied to some extent to sectoral conditions and becomes sector specific. Equation (3.107) determines
sectoral land supply, Land s , where the parameter ωt determines the degree of mobility. Equation (3.108) then defines
the average national return to land. Equation (3.109) is the equilibrium condition on the land markets where sectoral
demand for land equals sectoral land supply. Equation (3.110) converts the equilibrium price to the end-user price
(i.e. producer cost) of land by sector.TLand = χtl

(
PTLand

PNUM

)ωtl

if ωtl 6=∞

PTLand = PNUM if ωtl =∞
(3.106)

Land s
a = γt

a

(
PLanda

PTLand

)ωt

TLand if ωt 6=∞

PLanda = PTLand if ωt =∞
(3.107)

PTLandTLand =
∑
a

PLandaLand s
a (3.108)

Land s
a = Landd

a (3.109)

PLandp
a =

(
1 + τ ta

)
PLanda (3.110)
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3.6.3 Capital market equilibrium in comparative statics

There are two different implementations of capital market equilibrium in the model. The first is used for the
comparative static version of the model and is virtually identical to the specification of the labor market. There is a
national capital supply curve—and aggregate capital is allocated to sectors using a CET specification that is intended
to capture the degree of inter-sectoral capital mobility. The second specification is intended for the dynamic version
of the model. It includes a vintage specification for capital with a putty/semi-putty assumption.

Equations (3.111) through (3.114) reflect the capital market equations in the comparative static version of the
model and replicate the labor equations above. The two key elasticities are the aggregate supply elasticity, εk, and
the CET transformation elasticity, ωk, that proxies the degree of intersectoral capital mobility. The equations are
might by indexed by v, the index for vintages. In the comparative static version of the model there is a single vintage.
Also note that equation (3.114) is substituted out of the model.TKAP s = χKs

(
TR

PNUM

)εk
if εk 6=∞

TR = PNUM if εk =∞
(3.111)

K s
a,v = γk

a

(
PKa,v

TR

)ωk

TKAP s if ωk 6=∞

PKa,v = TR if ωk =∞
(3.112)

TR.TKAP s =
∑
a

PKa,v K s
a,v (3.113)

K s
a,v = K d

a,v (3.114)

3.6.4 Capital markets with the vintage capital specification

This section describes sectoral capital allocation under the assumption of multiple vintage capital and is used in
the dynamic version of the model. Capital market equilibrium under the vintage capital framework assumes the
following:

New capital is perfectly mobile and its allocation across sectors insures a uniform rate of return.

Old capital in expanding sectors is equated to new capital, i.e. the rate of return on Old capital in expanding
sectors is the same as the economy-wide rate of return on new capital.

Declining sectors release Old capital. The released Old capital is added to the stock of New capital. The
assumption here is that declining sectors will first release the most mobile types of capital, and this capital,
being mobile, is comparable to New capital (e.g. transportation equipment).

The rate of return on capital in declining sectors is determined by sector-specific supply and demand conditions.

The result of these assumptions is that if there are no sectors with declining economic activity, there is a single
economy-wide rate of return. In the case of declining sectors, there will be an additional sector-specific rate of return
on Old capital for each sector in decline.

To determine whether a sector is in decline or not, one assesses total sectoral demand (which of course, in
equilibrium equals output). Given the capital-output ratio, it is possible to calculate whether the initially installed
capital is able to produce the given demand. In a declining sector, the installed capital will exceed the capital
necessary to produce existing demand. These sectors will therefore release capital on the secondary capital market
in order to match their effective (capital) demand with supply. The supply schedule for released capital is a constant
elasticity of supply function where the main argument is the change in the relative return between Old and New
capital. Supply of capital to the declining sector is given by the following formula:

Ks
a,Old = K0

a

(
Ra,Old

Ra,New

)ηka
where Ks

Old is capital supply in the declining sector, K0 is the initial installed (and depreciated) capital in the sector
at the beginning of the period, and ηk is the dis-investment elasticity. (Note that in the model, the variable R is
represented by PK .) In other words, as the rate of return on Old capital increases towards (decreases from) the
rate of return on New capital, capital supply in the declining sector will increase (decrease). Released capital is the
difference between K0 and Ks

Old . It is added to the stock of New capital. In equilibrium, the Old supply of capital
must equal the sectoral demand for capital:
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Ks
a,Old = Kd

a,Old

Inserting this into the equation above and defining the following variable

RRa =
Ra,Old

Ra,New

yields the following equilibrium condition:

Ks
a,Old = K0

aRR
ηka
a

The supply curve is kinked, i.e. the relative rate of return is bounded above by 1. If demand for capital exceeds
installed capital, the sector will demand New capital and the rate of return on Old capital is equal to the rate of
return on New capital, i.e. the relative rate of return is 1. The kinked supply curve has been transformed into a
mixed complementarity (MCP) relation. The following inequality is inserted in the model:

Ks
a,Old = K0

aRR
ηka
a ≤ Kd,Not

a = χvaXPa

The right-hand side determines the notional demand for capital in sector a, i.e. it assesses aggregate output
(equal to demand) and multiplies this by the capital output ratio for Old capital. This is then the derived demand
for Old capital. If the installed capital is insufficient to meet demand for Old capital, the sector will demand New
capital, and the inequality obtains with the relative rates of return capped at 1. If the derived demand for Old
capital is less than installed capital, the sector will release capital according to the supply schedule. In this case the
inequality transforms into an equality, and the relative rate of return is less than 1.

Equation (3.115) determines the capital output ratio, χv for Old capital. Equation (3.116) specifies the supply
schedule of Old capital. In effect, this equation determines the variable RR, the relative rate of return between Old
and New capital.

χva,v =
Kd
a,v

XPva,v
(3.115)

K0
aRR

ηka
a ≤ χva,Old XPa ⊥ RRa ≤ 1 (3.116)

There is a single economy-wide rate of return on New capital. The equilibrium rate of return on New capital is
determined by setting aggregate supply equal to aggregate demand. Aggregate demand for New capital is given by:∑

{a|Expanding}

∑
v

Kd
a,v

where the set Expanding includes all sectors in expansion. Since Old capital in expanding sectors is equated with
New capital, the appropriate sum is over all vintages. The aggregate capital stock of New capital is equal to the
total capital stock, less capital supply in declining sectors:

Ks −
∑

{a|Decling}

Ks
a,Old

where the set Declining covers only those sectors in decline. However, at equilibrium, capital supply in declining
sectors must equal capital demand for Old capital, and capital demand for New capital in these sectors is equal to
zero. Hence, the supply of Old capital in declining sectors can be shifted to the demand side of the equilibrium
condition for New capital, and this simplification yields equation (3.117) which determines the economy-wide rate
of return on New capital, TR. Equation (3.118) determines the vintage and sector specific rates of return. For New
capital, RR is 1 and thus the rate of return on New capital is always equal to the economy-wide rate of return. For
Old capital, if the sector is in decline, RR is less than 1 and the rate of return on Old capital will be less than the
economy-wide rate of return.

TKAP s =
∑
a

∑
v

Kd
a,v (3.117)

PKa,v = TR.RRa (3.118)
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3.6.5 Allocation of Output across Vintages

This section describes how output is allocated across vintages. Aggregate sectoral output, XP , is equated to aggregate
sectoral demand and is derived from XS , which itself is derived from a CET aggregation of XD and XE . Given the
beginning of period installed capital, it is possible to assess the level of potential output produced using the installed
capital. If this level of output is greater than the aggregate output (demand) level, the sector appears to be in decline,
installed capital will be released, Old output will be equated with aggregate output (demand), and New output is
zero. Equation (3.119) determines output that can be derived from installed, or Old capital. Old output is equated
to the sectoral supply of Old capital, divided by the capital/output ratio. Equation (3.120) equates aggregate output,
XP , to the sum of output across all vintages, thus in essence this equation determines output produced with New
capital by residual since equation (3.119) determines what can be produced with Old capital. Equation (3.121)
converts the market price of capital to the end-user cost of capital.

XPva,Old =
K0
a

χva,Old

RR
ηka
a (3.119)

XPa =
∑
v

XPva,v (3.120)

PK p
a,v =

(
1 + τka,v

)
PKa,v (3.121)

3.6.6 Sector-specific capital

For the moment, sector-specific capital is assumed fixed and the equilibrium condition is implicit in the formulation,
i.e. the demand equation determines the equilibrium return. There is a wedge between the equilibrium price and the
return to agents given by the direct tax κkf . Equation 3.122 determines the net return to private agents, with the
residual accruing to public fiscal authorities.

RKFn
a =

(
1− κkf

a

)
RKFa (3.122)

3.6.7 Natural resource market equilibrium

Natural resources are sector specific. Their supply is given by an iso-elastic supply curve, equation (3.123), where
ωnr is the supply elasticity. The specification allows for a horizontal supply curve where the price is equated to a
domestic price index. The shifter χnr can be used to calibrate the supply equation to an exogenous profile for the
price of the natural resource (or its associated output). Equation (3.124) equates supply of the natural resource to
its demand.26 XNRs

a = χnr
a γ

nr
a

(
PNRa

PNUM

)ωnr
a

if ωnr
a 6=∞

PNRa = PNUM if ωnr
a =∞

(3.123)

XNRs
a = XNRa (3.124)

3.7 Macro identities

The following block of equations provides the main macroeconomic identities starting with the components of GDP
at market prices. Equations (3.125) through (3.127) determine respectively nominal aggregate stock building, real
aggregate stock building the stock building aggregate price index.

TSTB =
∑
i

[
χPS
i PSiSTBd

i + PM d
i STBm

i

]
(3.125)

RTSTB =
∑
i

[
χPS
i PSi,0 STBd

i + PM d
i,0 STBm

i

]
(3.126)

PTSTB = TSTB/RTSTB (3.127)

26 This equation is substituted out of the model, which only incorporates the variable XNR.
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Equations (3.128) through (3.130) determine respectively the nominal and real values for aggregate exports and
the aggregate export price index. Aggregate exports are evaluated at border, or FOB, prices in domestic currency
units.

TEXP = ER
∑
i

[
χPWE
i PWEiXEi

]
(3.128)

RTEXP = ER0

∑
i

[
χPWE
i PWEi,0 XEi

]
(3.129)

PEXP = TEXP/RTEXP (3.130)

Equations (3.131) through (3.133) determine respectively the nominal and real values for aggregate imports and
the aggregate import price index. Aggregate imports are evaluated at border, or CIF, prices in domestic currency
units.

TIMP = ER
∑
i

[PWMiXMi ] (3.131)

RTIMP = ER0

∑
i

[PWMi,0 XMi ] (3.132)

PIMP = TIMP/RTIMP (3.133)

Equation (3.134) defines nominal GDP at market price, where the index fd in the sum covers the standard final
demand accounts (households (h), government current expenditures (’Gov ’) and investment expenditures (’Inv ’)).
Equation (3.135) defines real GDP at market price, with the GDP at market price deflator given in equation (3.136).
Per capita real GDP is defined in equation (3.137), where TPop is aggregate population. Equation (3.138) is relevant
in dynamic simulations. In the baseline simulation, the growth in real per capita GDP, gy, may be exogenous (i.e.
targeted) and another variable would be endogenous to achieve the growth target—typically some factor productivity
parameter (discussed further below). In policy or alternative scenarios, the growth in real per capita GDP would be
endogenous.

GDPMP =
∑
fd

YFfd + TSTB + TEXP − TIMP (3.134)

RGDPMP =
∑
fd

XFfd + RTSTB + RTEXP − RTIMP (3.135)

PGDPMP = GDPMP/RGDPMP (3.136)

RGDPMPPC = RGDPMP/TPop (3.137)

gyt =

(
RGDPMPPCt
RGDPMPPCt−n

)1/n

− 1 (3.138)

Equation (3.139) defines nominal GDP at factor cost—it is simply the sum of factor remuneration across all
factors and activities of production. Equation (3.140) defines real GDP at factor cost. It is a linearization of the true
GDP function and is the weighted sum of the factors of production in efficiency units where the weights are given by
the relevant base year prices. The GDP at factor cost deflator is defined in equation (3.141).

GDPFC =
∑
a

∑
l

Wa,lL
d
a,l +

∑
a

∑
v

PKa,vK
d
a,v

+
∑
a

PLandaLandd
a +

∑
a

PNRaXNRa

(3.139)

RGDPFC =
∑
a

∑
l

Wa,l,0λ
l
a,lL

d
a,l +

∑
a

∑
v

PKa,v,0λ
k
a,vK

d
a,v

+
∑
a

PLanda,0λ
t
aLandd

a +
∑
a

PNRa,0λ
nr
a XNRa

(3.140)

PGDPFC = GDPFC/RGDPFC (3.141)
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The final macro identities provide more flexibility with closure rules. Key macroeconomic shares, real and
nominal government and investment expenditures as a share of GDP, are described in Equations (3.142) and (3.143)
respectively.

ϕrf = 100
XFf

RGDPMP
(3.142)

ϕnf = 100
YFf

GDPMP
(3.143)

Equation (3.144) defines the Fisher ideal price index for factor prices. It is based on the following formula that
defines the value of factor remuneration priced at time tp and using quantities from period tq :

VFACT tp,tq =
∑
a

∑
l

Wa,l,tpL
d
a,l,tq +

∑
a

∑
v

PKa,v,tpK
d
a,v,tq

+
∑
a

PLanda,tpLandd
a,tq +

∑
a

PNRa,tpXNRa,tq

The factor price index is a candidate to swap with foreign savings in a closure where the real exchange rate is
fixed. In this closure, PFACT is exogenous, i.e. the average domestic factor price is fixed relative to external prices
(assuming the exchange rate is the model numéraire) and the capital account adjusts to ex ante changes to the real
exchange rate. For example, if the world price of a key import, such as oil, increases, under the normal closure, the
real exchange rate adjusts (typically depreciates) to increase exports to pay for the higher cost of imports. In the
alternative closure, the capital account adjusts, for example through more borrowing, to pay for the higher cost of
imports.

PFACT t = PFACT t−1

√
VFACT t,t−1

VFACT t−1 ,t−1
· VFACT t,t

VFACT t−1 ,t
(3.144)

Equation (3.145) defines the domestic price deflator that is used in various equations. Other aggregate price
indices could be chosen as an alternative.

PNUM = PGDPMP (3.145)

Equation (3.146) defines equivalent variation. It represents the level of income, EV , necessary to achieve con-
temporaneous utility level, u, at base prices, PKF 0. It is a measure of welfare for households. Total economy-wide
welfare needs to take into account public and investment expenditures.27

∑
k

αkf
h,ku

eh,kbh,k

h

(
PKFh,k,0

EV hPoph

)bh,k

≡ 1 (3.146)

Due to Walras’ Law, one equation in the model can be dropped. The current implementation drops the balance
of payments equation (3.147). It is incorporated in the model but the variable Walras should be zero if the simulation
has succeeded and this is part of the model consistency check. Note that the balance of payments equation is evaluated
in foreign currency units and thus outbound transfers are divided by the exchange rate.

Walras =
∑
i

χPWE
i PWEiXEi︸ ︷︷ ︸

Exports

+ Sf︸︷︷︸
Net investment flows

+
∑
inst

Transfersinst,row︸ ︷︷ ︸
Inbound transfers

−
∑
i

PWMi (XMi + STBm
i )︸ ︷︷ ︸

Imports

−
∑
inst

Transfersrow,inst/ER︸ ︷︷ ︸
Outbound transfers

(3.147)

The default closure rules of the model are as follows:

Household savings are endogenous.28

Government revenues are endogenous and aggregate real government expenditures are fixed. The government
balance is fixed, in part to avoid problems of financing sustainability. The government balance is achieved with
a uniform shift in the household direct tax schedule—currently implemented using the additive shifter (though
with a single household model this has no implications on distribution). This implies that new revenues, for
example generated by a carbon tax, would lower direct taxes paid by households.

27 NEW: Added to the model on 31-May-2018.
28 Though given the current model implementation the average propensity to save is fixed.

22



Investment is savings driven. Household and government savings were discussed above. Foreign savings, in
the default closure are fixed. Thus investment is largely influenced through household savings.29

The current account, the mirror entry of the capital account, is exogenous. Ex ante changes to trade, for
example a rise in the world price of imported oil, is met through ex post changes in the real exchange rate.

3.8 Emissions module

The model is setup so as to include any number of emissions, indexed by em, generated by input use (both intermediate
and factor demand—for example livestock or land), and by output (for example the case of cement, or methane
emissions from landfills). The current version only incorporates CO2 emissions—mostly from the combustion of fossil
fuels, though with some quantity generated by cement producing emissions.

Equation (3.148) determines the level of emissions from the (Armington) consumption of good i, by Armington
agent aa (either intermediate or final demand). The basic coefficient is ρ that is the initial level of emissions per unit
of consumption (for example, tons of CO2 per ton of oil equivalent). The χ parameters allow for (exogenous) changes
in the emissions coefficients that could be brought about by autonomous improvements in the level of emissions per
unit of use. Equation (3.149) determines the level of emissions per unit of factor use. In livestock this could pertain
to the size of the herds (for example for methane emissions), and in agriculture, it could be linked to land use. In
the current version of the model, only capital use is allowed to create emissions and at the moment, all emissions are
zero. Equation (3.150) determines the level of emissions generated by overall output. This can be used to assess the
level of emissions from certain sectors—such as CO2 emissions in cement (around 50 percent of which are not linked
to the use of fuels), or methane emissions from landfills. Equation (3.151) determines the total level of emissions,
for emission em, summing over all sources—intermediate and final consumption, and factor- and production-based
emissions. It allows for an exogenous level of autonomous emissions—that could, for example, come from an external
model. A subset of emissions are linked with greenhouse gases (ghg) such as CO2, methane, nitrous oxides and the
fluoridated gases. Equation (3.152) calculates the total of greenhouse gas emissions where the individual gases are
weighted by the so-called global warming potential (GWP).30

EMIem,i,aa = χemi
em,i,aaρ

emi
em,i,aaXAi,aa (3.148)

EMIem,cap,a = χemi
em,cap,aρ

emi
em,cap,a

∑
v

K d
a,v (3.149)

EMI XP
em,cap,a = χemiXP

em,a ρemiXP
em,a XPa (3.150)

EMITotem =
∑
i

∑
aa

EMIem,i,aa +
∑
fp

∑
a

EMIem,fp,a +
∑

a

EMI XP
em,a + EMIOthem (3.151)

EMI GHG =
∑
ghg

GWPghgEMITotghg (3.152)

There are several possibilities for imposing limits on emissions. The simplest is to set a level for the emissions
tax, τ em . At the moment, τ em is only linked to the direct consumption of (Armington) goods, i.e. it is only impacted
through Equation (3.148), with no effect on the use of factors or production level. [We would need to develop
marginal abatement curves to directly address these latter two. In the case of factors, the only potential abatement is
substitution to other factors. In the case of production, the only abatement possibility is a reduction in output.] An
alternative is to cap emissions, for example EMITot , and allow the model to calculate the relevant tax (e.g. carbon
tax), consistent with the emissions constraint. With the standard closure, the marginal tax rates across households
are shifted by a uniform amount as government expenditures and savings are exogenous.

3.9 Miscellaneous equations

Equations (3.153) and (3.154) are introduced to allow for some control of the electricity mix. Equation (3.153)
defines the (volume) electricity shares in the production of electricity (where the index ely is mapped to the national
electricity commodity). Equation (3.154) defines the aggregate share of renewable electricity (where the subset gEly

29 Alternative closures are conceivable, for example targeting investment (as a share of GDP) and allowing the
household savings schedule adjust to achieve the target.

30 See IPCC (1996), page 22, and also http://unfccc.int/ghg data/items/3825.php.

23

http://unfccc.int/ghg_data/items/3825.php.


contains the renewable electricity technologies). The latter can be fixed to attain a given renewable mandate for
electricity production. Only one instrument can be used, even if the renewable target encompasses more than one
technology.

elyShra =
Xa,ely∑

a′
Xa′,ely

(3.153)

gElyShr =
∑
a∈gEly

elyShra (3.154)

3.10 Model Dynamics

Model dynamics are driven by three factors—similar to most neo-classical growth models. Population and labor force
growth rates are exogenous. The labor force growth rate is typically equated to the growth rate of the working age
population, i.e. the population aged between 15 and 64.

The second factor is capital accumulation. The aggregate capital stock in any given year, KStock , is equated
to the previous year capital stock, less depreciation at a rate of δ, plus the previous period’s volume of investment,
XFInv :

KStockt = (1− δ)KStockt−1 + XFInv,t−1

The latter is influenced by the national savings rate plus foreign savings and, as well, the unit cost of invest-
ment. A modified version of the capital accumulation function is implemented to allow for multi-period steps in
the dynamic simulations (see Appendix C). Since investment is not calculated between periods, an assumption is
made about the inter-period growth rate in investment and this is used to determine the contemporaneous capital
stock. Equations (3.155) and (3.156) implement the multi-period capital stock motion equation. Setting n to 1 shows
that the combination of the two equations is equivalent to the equation above. The aggregate capital stock variable
takes two forms. The first, KStock , is the aggregate capital stock evaluated at base year prices. The second is the
’normalized’ aggregate capital stock, TKAP s , see equation (3.117). The normalized capital stock is equal to the
aggregate base year capital remuneration, i.e. the user cost of capital across sectors. It is normalized because its price
is set to 1 in the base year. The ratio of the normalized capital stock to the actual capital stock provides a measure
of the gross rate of return to capital. It is assumed that both measures of the capital stock grow at the same rate
and hence equation (3.157) that equalizes the ratio of the two measures.31

IGFactt =

[(
XFInv,t

XFInv,t−n

)1/n

− 1 + δt

]−1

(3.155)

KStockt = [KStockt−n − IGFactt XFInv,t−n ] (1− δt)n + IGFactt XFInv,t (3.156)

TKAP s
t =

TKAP s
0

KStock0
KStockt (3.157)

The third factor is productivity. There are a number of productivity factors peppered throughout the model.
The key productivity factor is λl that corresponds to converting labor in volume terms to labor in efficiency units.
It is typically initialized at 1 in the base year. The following assumptions are made regarding productivity:

Sectors are segmented into three groups—those for which productivity is fully exogenous, those for which an
economy-wide productivity is calibrated, and others that are based on the calibrated economy-wide produc-
tivity, but with an additional wedge. For example labor productivity in services might be calibrated to achieve
a growth target and productivity in manufacturing might be some function of services productivity (say 2
percentage points higher).

Typically productivity in agriculture is exogenous and factor neutral. The λn and λv parameters are set to
grow at some exogenous and uniform rate.

In the other sectors, productivity is labor augmenting only.

31 It is important to use the actual capital stock in the capital accumulation function since the level of investment
must correspond to the actual capital stock, not the normalized level.
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There is a wedge between productivity in the two remaining segmented sectors (e.g. manufacturing and
services), represented by the factors α and β in equation (3.158). For some set of sector(s) and skill level(s), α
is 0 and β is 1. The economy-wide labor productivity shifter, γl, is calibrated to achieve a given growth target
in the business-as-usual scenario. In the other sector(s) and for other skill level(s) the labor productivity will
be some linear combination of γl. For example, if α is 2 percent (0.02) and β is 1, then the wedge would
be 2 percent.

λla,l,t = λla,l,t−n

(
1 + αla,l + βla,lγ

l
t

)n
(3.158)

The other key growth/efficiency parameter in the model is energy efficiency as captured by the λe parameter
in production and the λeh and λef parameters in the final demand for energy. These are defined exogenously—for
example 1 percent per annum.
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Chapter 4

Model Implementation

4.1 Model files

Table 4.1 lists the core files used for model implementation:

Table 4.1: Code model files

Name Description

model.gms File containing model definition

cal.gms File to initialize variables and calibrate model parameters

iterloop.gms File implemented before each solve statement
postsim.gms File containing post-simulation statements

The central file is called model.gms and contains variable, parameter and equation declarations followed by
equation and model definitions. The listing of the model equations follows the same order as in this document and
should allow for a relatively transparent comparison of the model write-up and its implementation in GAMS. The
cal.gms file contains variable initialization and calibration of model parameters. Like most CGE models, many
model parameters are calibrated such that the model implementation is able to re-produce the base dataset. The
input to the calibration procedure is the base year SAM, potentially some satellite accounts such as energy balances,
population, etc. and a set of key parameters (mostly elasticities). More formally the model can be written as:

F (y, x, θ,Ω) = 0

where y is a multi-dimensional set of endogenous variables, x is a multi-dimensional set of exogenous variables,
and the parameter set is divided into two: θ contains calibrated parameters and Ω contains key (or user-specified)
parameters. A typical simulation is then solving F for y with x, θ and Ω fixed—and x deviates from its base value.
In the calibration phase, y, x and Ω are known and the function F is used to solve for θ:

F (y0, x0, θ,Ω) = 0

In practice, calibration can be done block by block without the need to invert F formally.
The file iterloop.gms contains code that is called before each solution period. It will fix zero activities, fix

lagged variables, update exogenous dynamic variables and implement closure rules.
Any simulation—be it comparative static or dynamic—requires these three files. A specific simulation is attached

to a given simulation file. In addition to the three core model files, a simulation file will read in the input data files—
the base year SAM and satellite accounts, user-specified parameters, and, in the case of dynamic scenarios, a file
containing dynamic information, e.g. reference population and GDP trends.
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4.2 Model simulation

The model can be run as either a comparative static model or as a recursive dynamic model. The former is often
used to validate model initialization, calibration and consistency—particularly when testing new model features. The
latter is more often used for forward looking policy analysis or for dynamic sensitivity analysis. Whether doing
comparative statics or dynamic simulations, a simulation file has to be compiled by the user that brings together the
different components of the model:

1. Read the base data

2. Aggregate the base data and read the key model elasticities

3. Define the time dimension of the model

4. Read in the model code (model.gms)

5. Read in the dynamic assumptions

6. Initialize and calibrate the model (cal.gms)

7. Loop over all time periods:

Initialize exogenous assumptions (iterloop.gms)

Define time-specific shocks

Solve the model

Save intermediate results

8. Post-simulation analysis

There are two generic files that provide the structure of a standard simulation—one for comparative statics
(comp.gms) and one for a dynamic baseline (bau.gms). The differences will be highlighted below. There are two
additional dynamic files. One is called dynNoShk.gms. The purpose of this file is to re-run the baseline dynamic
file (bau.gms) with no shocks. The difference between this simulation and the baseline simulation is that some
dynamic variables are calibrated in the baseline scenario (e.g. government expenditures and labor productivity). The
dynNoShk.gms simulation file is intended to check the consistency of the dynamic scenario in the absence of any
shock. A third dynamic file is called dynShk.gms. For the moment it is simply a test file that simulates a reduction
in import tariffs.

4.2.1 Comparative static simulation file

The GAMS code below shows the structure of the comparative static simulation file. The comments below highlight
the key elements that the user might typically change in a comparative static simulation.

1. The first lines read in the base data. This will be described further below. The first data set contains the
full base year SAM. The second contains potential aggregation mappings of the full SAM, the definition of
subsets needed for the model, and the user-specified key input parameters. The first file is rarely modified.
The second may be modified by the user.1

2. The time dimension of the comparative static simulation is simply the number of simulations that will be run
within the confines of this simulation file. In the standard comp.gms file, the time dimension has three items:
base, check, and shock. The first item is typically not actually simulated and simply contains the initialized
base year data for the model. The second, check, is actually used to test the consistency of data initialization
and calibration. There are two checks normally performed. The first check requires analyzing the listing
file produced by GAMS. Before running a simulation GAMS will list all of the equations and compare the
left-hand side (LHS) of the model with the evaluated right-hand side.2 If the data and parameters have been
appropriately initialized and calibrated, the equations should evaluate to zero, or a very small number that
represents the numerical accuracy of the input SAM (appropriately scaled). The second check is to look at the
output results. The output of the check simulation should line up with the output of the non-simulated base

1 This document, among other things, explains how to use Manage to simulate a single country extraction of the
GTAP database. Assuming the data for a single country has been extracted, the user needs to define the REGION

macro by using the relevant three-letter ISO code for the region.
2 To make sure the evaluated equation listing appears in the list file, the limrow options must be set to a positive

value. By default, if an equation is indexed, GAMS will display up to three equations. The option can be set
by the following command: options limrow=x ;, where by default x is 3.
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results. The third simulation, shock, typically tests the price homogeneity of the model.3 This is often useful
for debugging purposes in capturing model mis-specification. The results of the homogeneity test should be
that all prices and values should increase by the same percentage change of the numéraire and that all volumes
should be invariant.

3. The next section initializes the output files. Typically, the user may want to change the name of the output
files. The standard output format is a CSV file that can be read directly into Excel, or more commonly and
convenient, read in to an Excel Pivot table.

4. The next section should normally not be modified. It sets up the vintage specification for capital. In the
comparative static model, there is only Old capital.

5. Most of the remainder of the file should not be modified with the exception of the actual shocks. The only
shock in the default comparative static file is the modification of the numéraire. This is specified by the line:
er.fx(ts) = 1.2*er.l(ts) ;.

The best way to run additional comparative static simulations is to copy the file comp.gms to a new file name
and modify the time, output file names and the definition of the shock.

Listing 4.1: Comparative static simulation file

2 $setGlobal REGION "ISO"

4 $offlisting
5 $onempty

7 $include ’%REGION%SAMV9.dat’
8 $include ’%REGION%Base.dat’

10 $offempty
11 $onlisting

13 sets
14 t "Time" / base, check, shock /
15 t0(t) "Base period" / base /
16 ts(t) "Simulation period"
17 tsim(t) "This simulation period"
18 ;

20 ts(t) = no ;
21 alias (t,tt) ;

23 parameter years(t) /
24 base 1
25 check 2
26 shock 3
27 / ;

29 parameter gap(t) ; gap(t) = 1 ;

31 file csv / %region%comp.csv / ;
32 put csv ;
33 put "Simulation,Variable,Sector,Qualifier,Year,Value" / ;
34 csv.pc=5 ;
35 csv.nd=9 ;

37 file samcsv / %region%compsam.csv / ;
38 scalar ifSam / 1 / ;
39 if(ifSam,
40 put samcsv ;
41 put "Simulation,rLab,cLab,Year,Value" / ;
42 samcsv.pc=5 ;
43 samcsv.nd=9 ;
44 ) ;

3 This assumes that model is intended to be homogeneous in prices. There might be versions of the model, for
example with a fixed price, in which case price homogeneity fails.
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46 sets
47 v "Vintages" / Old /
48 v0(v) "Initialization" / Old /
49 vc(v) "Calibration" / Old /
50 vOld(v) "Old vintage" / Old /
51 Old(v) / Old /
52 New(v) / Old /
53 ;

55 set mapv(v, vint) /
56 Old.Old
57 Old.New
58 / ;

60 scalar ifVint / 0 / ;

62 set diag /
63 modStatus
64 Walras
65 / ;

67 parameters
68 diagnostics(diag, t)
69 ;

71 file screen / con / ;
72 put screen ;

74 ∗ Set ifComp to 1 for comparative static simulations

76 scalar ifComp / 1 / ;

78 ∗ Set ifCal to 1 for BaU scenarios

80 scalar ifCal / 0 / ;

82 ∗ Set ifCDE to 1 for using the CDE utility function

84 scalar ifCDE / 1 / ;

86 ∗ Closure rules

88 set cr /

90 ∗ Default −− government expenditures are fixed in real terms
91 ∗ government savings are fixed in real terms
92 ∗ household tax shifter is endogenous
93 ∗ investment is savings driven
94 ∗ public and foreign savings are fixed
95 ∗ household savings shifter is fixed
96 ∗ trade balance is fixed, and gdp deflator is endogenous

98 default

100 / ;

102 parameter closure(cr) ; closure(’default’) = yes ;

104 $include ’model.gms’

106 $include ’compscn.dat’

108 $include ’cal.gms’

110 loop(tt,

112 if (ord(tt) gt 1,
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114 ts(tt) = yes ;

116 $include ’iterloop.gms’

118 if (ts(’shock’),

120 ∗ Homogeneity check

122 er.fx(ts) = 1.2 ;

124 ∗ Labor productivty check
125 ∗ lambdal.fx(a,l,ts) = 1.1 ;

127 ) ;

129 options limrow=3, limcol=3 ;
130 ∗ options iterlim = 10 ;

132 solve cgecore using mcp ;

134 diagnostics("modStatus",ts) = cgecore.solvestat ;
135 diagnostics("Walras",ts) = walras.l/inscale ;

137 if (cgecore.solvestat eq 1,
138 put screen ;
139 put // "Solved for year ", years(tt):4:0 // ;
140 tsim(ts) = yes ;
141 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
142 putclose screen ;
143 else
144 put screen ;
145 put // "Failed to solve for year ", years(tt):4:0 // ;
146 tsim(ts) = no ;
147 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
148 putclose screen ;
149 ) ;

151 ts(tt) = no ;

153 ) ;

155 ) ;

157 display diagnostics ;

159 set sim / comp / ;
160 loop(sim,

162 $include "postsim.gms" ;

164 ) ;

4.2.2 Running dynamic simulations

Dynamic simulations require considerably more input from the user—notably a time framework for the simulations
and key dynamic assumptions such as population growth. There are also two distinct types of dynamic simulations.
There is a baseline simulation.4 In the standard baseline simulation GDP growth is exogenous and given by the user.
It might come from national planning authorities, a finance ministry or some other source. And other closure rules
might be set that differ from the standard closure rules and/or trends for other exogenous variables are implemented—
for example known policy changes, energy prices, foreign inflows and outflows, etc. The baseline simulation is
used to calibrate an economy-wide productivity variable that ensures that the baseline results are consistent with
the exogenous inputs including assumptions on GDP growth. In subsequent dynamic simulations, the calibrated

4 Sometimes referred to as the reference simulation or the business-as-usual (BaU) simulation.
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productivity variable is exogenous and GDP growth is endogenous—corresponding to changes in other variables—for
example a policy shock. In the absence of any shocks, a dynamic scenario should be able to re-produce the baseline.

The dynamic simulation files are divided into two parts. There is a file that will be common across all dynamic
simulations and thus will be kept separated and typically needs no change across the simulations. The other part of
the dynamic simulation is what distinguishes the particular simulation. For example, there might be three separate
dynamic simulations—the baseline, a no-shock simulation that should re-produce the baseline, and a dynamic shock
simulation that deviates from the baseline. The description of the common part of a dynamic file is described
first—the file is named dynamDef.gms

1. The first part of the common dynamic file describes the sets needed for the vintage part of the model.

2. The next section describes the full potential time horizon. This is linked to the SSP projections that were
initially developed for GTAP V8 with a 2007 base year. It is still valid for GTAP V9 with a 2011 base year.
The full time range thus spans the period 2007–2100.

3. The third section describes the SSP dimensions. The shared socio-economic pathways, or SSPs, have been
developed by a number of research teams for climate change work related to the Intergovernmental Panel
on Climate Change (IPCC). The dynamic simulations for the moment rely on the demographic and GDP
quantifications of the SSPs. IIASA has been responsible for developing the demographic projections for the
5 SSPs. For our purposes these have been collapsed to three age cohorts (less than 15, 15 to 64 and 65 and
above) and the gender and education dimensions are ignored. The IIASA population projections have been
complemented with the demographic projections from the United Nations Population Division. There are two
sets of UN projections—the 2010 and 2012 revision, for the medium variant. IIASA’s SSP2 projection was
intended to more or less align with the UN 2010 revision.

Three research teams developed GDP projections—all of which were harmonized to the same IIASA population
projections. The IIASA and OECD GDP projections were done at the individual country level. The third set
of projections from PIK was done at a more aggregate regional level. For our purposes, only the IIASA and
OECD GDP projections have been made available.

There are five basic SSP scenarios that are summarized in Table 4.2.

Table 4.2: SSP Scenarios

SSP Description

SSP1 Sustainability—less resource intensity, equitable, good growth

SSP2 BaU—muddling through or dynamics as usual

SSP3 Fragmentation—with high inequality and poverty, low and dirty growth

SSP4 Inequality—highly unequal world but significant mitigation capacity

SSP5 Conventional development—relatively dirty but with high adaptation capacity

One can think of SSP2 as a business-as-usual, SSP1 is a rosy scenario both in terms of sustainability and
rapid and equitable growth, SSP3 is the polar opposite and SSP4 and SSP5 are variants. These scenarios are
complete trends between 2007 and 2100 and therefore provide full flexibility in terms of the time dimension of
the dynamic simulations. [We could add to these scenarios population/GDP scenarios prepared by national
authorities or from other sources.]

4. The fourth section inputs the key data files of which there are three. Two are exactly the same as for the
comparative static simulations, i.e. the base year SAM and the user defined aggregation mappings and key
model elasticities. The third, ISOBaUScn.dat, contains the SSP information extracted for the relevant
country. The file contains the full set of SSP information, only a subset of which will be needed for the
dynamic simulation.

5. The remainder of this file is mostly self-explanatory. It is important to set the user flag ifComp to 0 for
dynamic simulations. This largely affects how capital markets work. In comparative static simulations the
capital market uses an upward sloping supply curve for aggregate capital and a CET function to allocate capital
across sectors. In the dynamic setting, capital allocation depends on the vintage specification as described
above.

The last few lines of the file are only executed for non-baseline simulations, i.e. when the user flag ifCal is
set to 0. For example, the baseline solution will be loaded into memory as a potential starting point.
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Listing 4.2: The common part of all dynamic simulations

1 sets
2 v Vintages / Old, New /
3 v0(v) Initialization / Old /
4 vc(v) Calibration / New /
5 vOld(v) Old vintage / Old /
6 Old(v) Old index / Old /
7 New(v) New index / New /

9 ;

11 set tf Time range / 2007∗2100 / ;

13 parameter
14 years(tf)
15 ;

17 years(tf) = 2006 + ord(tf) ;

19 set Scen Scenarios /
20 ssp1 "Sustainability−−less resource intensity, equitable, good growth"
21 ssp2 "BaU−−muddling through or dynamics as usual"
22 ssp3 "Fragmentation−−with high inequality and poverty, low and dirty growth"
23 ssp4 "Inequality−−highly unequal world but significant mitigation capacity"
24 ssp5 "Conventional development−−relatively dirty but with high adaptation capacity"
25 UNMed "UN Medium variant 2010 revision"
26 UNMed2012 "UN Medium variant 2012 revision"
27 / ;

29 set sspScen(Scen) SSP scenarios /
30 ssp1 "Sustainability −− less resource intensity, equitable, good growth"
31 ssp2 "BaU −− muddling through or dynamics as usual"
32 ssp3 "Fragementation −− with high inequality and poverty, low and dirty growth"
33 ssp4 "Inequality −− highly unequal world but significant mitigation capacity"
34 ssp5 "Conventional development −− relatively dirty but with high adaptation capacity"
35 / ;

37 set Mod GDP models /
38 IIASA "IIASA long term GDP projections"
39 OECD "OECD long term GDP projections"
40 / ;

42 $offlisting
43 $onempty
44 $include ’%REGION%SAMV9.dat’
45 $include ’%REGION%Base.dat’
46 $include ’%REGION%BaUScn.dat’
47 $offempty
48 $onlisting

50 set ts(t) Simulation period ; ts(t) = no ;
51 set tsim(t) ;
52 alias (t,tt) ;

54 set mapv(v, vint) /
55 Old.Old
56 New.New
57 / ;

59 scalar ifVint / 1 / ;

61 set diag /
62 modStatus
63 Walras
64 / ;

66 parameters
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67 diagnostics(diag, t)
68 ;

70 $offsymxref offsymlist

72 file screen / con / ;
73 put screen ;

75 ∗ Set ifComp to 1 for comparative static simulations

77 scalar ifComp / 0 / ;

80 ∗ Set ifCDE to 1 for using the CDE utility function

82 scalar ifCDE / 1 / ;

84 ∗ Closure rules

86 set cr /

88 ∗ Default −− government expenditures are fixed in real terms
89 ∗ government savings are fixed in real terms
90 ∗ household tax shifter is endogenous
91 ∗ investment is savings driven
92 ∗ public and foreign savings are fixed
93 ∗ household savings shifter is fixed
94 ∗ trade balance is fixed, and gdp deflator is endogenous

96 default

98 / ;

100 parameter closure(cr) ; closure(’default’) = yes ;

102 $include ’model.gms’

104 $include ’cal.gms’

106 if(ifCal eq 0,

108 $if exist "%BAUNAME%.gdx" execute loadpoint "%BAUNAME%.gdx" ;

110 xfT(oa,t) = xf.l(oa,t) ;

112 ) ;

The key component of the baseline simulation file is the ifCal flag it determines the type of dynamic simulation.
When it is set to 1, the model assumes that GDP is exogenous and will calibrate an economy-wide productivity factor
to insure that the GDP target is achieved. It is also assumed in the reference scenario that the share of government
expenditures relative to GDP is constant. With ifCal set to 0, the productivity trend is read in from the GDX file
that contains the results from the reference scenario. In addition, real government expenditures are also exogenous
(in levels, not as a share of GDP), and likewise read in from the baseline GDX file.5

The main modules of the baseline simulation file are described next.

1. The first few lines initialize some macros that are used to name key files. The REGION macro is typically
a 3-letter ISO card for the relevant country. The SIMNAME macro will provide a succinct descriptor of the
simulation. The BAUNAME macro provides the name of the baseline scenario. The latter two macros could have
the same name.

2. The next item sets the ifCal flag. It should only be set to 1 for the baseline scenario as described above.

3. After reading the common dynamic module, the baseline simulation loops over all time periods and solves
the model once for each solution period. The statements in iterloop.gms provide a bridge between solution
periods to update relevant variables and provide a starting point for the next simulation year.

5 This assumption simplifies welfare analysis.
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Listing 4.3: The baseline simulation file

1 $setGlobal REGION "ISO"
2 $setGlobal SIMNAME "BaU"
3 $setGlobal BAUNAME "BaU"

5 ∗ Set ifCal to 1 for BaU scenarios

7 scalar ifCal / 1 / ;

9 $include "dynamDef.gms"

11 loop(tt$(years(tt) le 2050),

13 if (ord(tt) gt 1,

15 ts(tt) = yes ;

17 $include ’iterloop.gms’

19 options limrow=3, limcol=0 ;
20 options solprint=off ;
21 options iterlim=100 ;

23 solve cge using mcp ;

25 diagnostics("modStatus",ts) = cge.solvestat ;
26 diagnostics("Walras",ts) = walras.l/inscale ;

28 if (cge.solvestat eq 1,
29 put screen ;
30 put // "Solved for year ", years(tt):4:0 // ;
31 tsim(ts) = yes ;
32 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
33 putclose screen ;
34 else
35 put screen ;
36 put // "Failed to solve for year ", years(tt):4:0 // ;
37 tsim(ts) = no ;
38 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
39 putclose screen ;

41 ) ;

43 ts(tt) = no ;

45 ) ;

47 ) ;

49 display diagnostics ;

51 execute unload "%SIMNAME%.gdx" ;

Two other dynamic files are provided. One is called DynNoShk.gms. It is meant to test the consistency of the
reference simulation. There are only two differences in this file compared to the BaU.gms file. The simulation flag
ifCal is set to 0, and the output GDX filename is different. The output from this simulation should be identical to
the output from the BaU.gms simulation. The other dynamic file is called dynShock.gms. It illustrates one way
to implement a dynamic policy shock that is not part of the baseline. The flag ifCal is set to 0 and a new name
for the GDX file is provided. The code extract below shows how the shock is implemented. The simulation reduces
import tariffs by 50 percent. The shock is phased in linearly starting in 2015 and ending in 2025.

Listing 4.4: Simulating a reduction in import tariffs

1 $setGlobal REGION "ISO"
2 $setGlobal SIMNAME "dynShock"
3 $setGlobal BAUNAME "BaU"
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5 ∗ Set ifCal to 1 for BaU scenarios

7 scalar ifCal / 0 / ;

9 $include "dynamDef.gms"

11 loop(tt$(years(tt) le 2050),

13 if (ord(tt) gt 1,

15 ts(tt) = yes ;

17 $include ’iterloop.gms’

19 if(years(tt) gt 2014,

21 ∗ Reduce import tariffs between 2014 and 2025

23 loop(t0,
24 if(years(tt) le 2025,
25 tm.fx(i, tt) =
26 tm.l(i, t0)∗(1 + (0.5 − 1)∗(years(tt) − 2014)/(2025−2014)) ;
27 else
28 tm.fx(i,tt) = 0.5∗tm.l(i,t0) ;
29 ) ;
30 ) ;
31 ) ;

33 options limrow=3, limcol=0 ;
34 options solprint=off ;
35 options iterlim=100 ;

37 solve cge using mcp ;

39 diagnostics("modStatus",ts) = cge.solvestat ;
40 diagnostics("Walras",ts) = walras.l/inscale ;

42 if (cge.solvestat eq 1,
43 put screen ;
44 put // "Solved for year ", years(tt):4:0 // ;
45 tsim(ts) = yes ;
46 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
47 putclose screen ;
48 else
49 put screen ;
50 put // "Failed to solve for year ", years(tt):4:0 // ;
51 tsim(ts) = no ;
52 loop(diag, put diag.tl:<10, diagnostics(diag,tt) / ; ) ;
53 putclose screen ;

55 ) ;

57 ts(tt) = no ;

59 ) ;

61 ) ;

63 display diagnostics ;

65 execute unload "%SIMNAME%.gdx" ;
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4.2.3 Post-simulation analysis

Post-simulation analysis is typically done directly for comparative static simulations. Essentially this involves includ-
ing a GAMS file entitled postsim.gms that includes outputting a number of solution statistics—including optionally
the SAM. Because of the structure of the file postsim.gms, it must be embedded in a loop over the set sim. In the
case of a comparative static exercise, the set normally has a size of 1, with an appropriate label. The output of post-
sim.gms are two CSV files that can be directly read into Excel. One of the CSV files contains the post-simulation
SAMs and the output of this file is optional.

[To be completed.]
Post-simulation of dynamic scenarios is somewhat more complicated. The solution of each dynamic simulation

is saved as a GDX file. This is a compact way to save solutions across simulations. A separate GAMS file can be
used to read multiple solution files and concatenate them together in a single CSV file. One example is provided in
the file maketab.gms. From the user perspective there are only three modifications that need to be done to the file
maketab.gms. The first is the names of the GDX files that will be merged. These must be given in the set defined
by the name sim. The second is the name of the two output files. One file will contain the detailed results of all
simulation listed in the set sim. This file will be a CSV file, potentially very large as the complete results of all of the
simulations are merged together in one CSV file. The other file will contain the merged SAMs from the simulation.
The latter is optional and determined by the setting of the flag ifSAM.

The postsim.gms file is not very sophisticated at the moment. Future enhancements will include the ability to
filter results by variable, sector, time etc. in order to limit the size of the output and focus on some key results. The
other will be to add code that allows for aggregating results—across sectors for example.

Two Excel files show how the results are read in to an Excel Pivot table and the creation of customized tables
that query the Pivot table directly. One could also design customized charts from the same data source. The file
BaUScenarios.xlsx shows some of the key results from the reference scenario. The file nrgTax.xlsx compares
some of the key results from the subsidy elimination scenario with the baseline scenario.

[To be completed.]

4.3 Data preparation

There are a number of ways the user can modify the model’s database. Most of this has been encapsulated in an
Excel file—though it still in a beta phase—that will write-out all of the appropriate input files for the simulation.
This is done via a VBA macro. Given the general reliability of Microsoft’s products, there is no guarantee that the
VBA macro will work correctly on any machine other than the one it was developed on! User’s always have the
option of directly editing any of the provided input files that have been written out with the VBA macro.

As mentioned above, there are two key data files that are rarely modified by the users—the base year SAM and
the exogenous dynamic trends. The base year SAM is nonetheless part of the Excel package and will be written
out by the VBA macro so the user has some control over this. And in the future, we may wish to add additional
exogenous dynamic trends to the existing set including those from the national authorities.

The main user inputs are:

Aggregation mappings for activities and commodities

Definitions of subsets

Key substitution, transformation and income elasticities

Dynamic time framework

Dynamic assumptions including choice of exogenous scenario

The following sections will describe each of the separate worksheets of the supplied Excel user input file.

Options

The Options worksheet contains most of the main options. The cells in light pink can be changed by the user. There
is also a button on this worksheet that will run the macro when it is pushed with a mouse click. The main options
are the following:

Activities

The Activities worksheet contains the aggregation mapping for the activities of the SAM. By default there is a one-
to-one mapping between the activities of the full SAM and the model dimensions. [Given the tentative nature of
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Table 4.3: Main options in the Options worksheet

Name Description

Working directory Working directory to which all data files will be written to

Language Set the Boolean cell to FALSE for English, otherwise to TRUE

for alternative or default language

Name of SAM file Name of file that will contain base year SAM

Name of bridge file Name of file that will contain aggregation mappings and all
other user inputs

Name of scenario file Name of file that will contain main inputs for dynamic sce-
nario

Description Description of SAM (in both the default language and En-
glish)

Scale factor for SAM Input data needs to be scaled for model convergence pur-
poses. GDP should be scaled so that it is around 100

Scale factor for population Population should be scaled so that it is around 100

Population scenario There are six population scenarios labeled SSP1 through
SSP5 and UNMED

GDP Scenario There are five GDP scenarios labeled SSP1 through SSP5

GDP model There are two sets of GDP scenarios—OECD and IIASA

Scenario time framework The time framework is specified in this part of the worksheet.
It must start with the base year (2007) and end with the year
2100 or less. Any sequence of years works—with both annual
and multi-annual gaps. N.B. The macro that writes the data
files relies on a named range called timeScen to write out
the time framework. If the user changes the number of time
steps, the named range timeScen must be adjusted. This
can be done by going to the Formulas|Name Manager tab
in Excel and re-specifying the timeScen range.

this file, it is not recommended to change the mapping for the moment.] Beyond the mapping, the user can also
specify labels and descriptors in both English and an alternative language, also called the default language (typically
English). The descriptions and labels thus have four columns. The first and third columns (the descriptions and
corresponding labels) are in the default language, and the second and fourth columns are in English. Finally the
worksheet contains some subset definitions that are potentially used by the model. There are currently four activity
subsets that are self-explanatory—agr (agriculture), man (manufacturing), srv (services), and nrg (energy). The
subsets are defined with Boolean values. The last column, labeled acal, is active in dynamic scenarios. All activities
that are part of the subset acal are assumed to be subject to the economy-wide productivity growth factor that is
calibrated in the reference scenario.

Commodities

The Commodities worksheet contains the aggregation mapping for the commodities of the SAM. By default there
is a one-to-one mapping between the commodities of the full SAM and the model dimensions. [Given the tentative
nature of this file, it is not recommended to change the mapping for the moment.] Beyond the mapping, the user can
also specify labels and descriptors in both the default language and English. There is a single subset of commodities
for the energy commodities labeled e. This worksheet contains an additional mapping for household consumption.
Household consumption is not defined on the basis of all commodities, but on an aggregation of commodities and uses
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a nested structure to determine the full demand for commodities.6 Under the list of commodities is an additional
set of labels and descriptors that determine the number of household commodities. One of the these will (and must)
be an energy commodity and this needs to be indicated with a Boolean value. This is important because the model
decomposes the energy bundle in a specific manner that is intended to capture inter-energy substitution. The right
most columns of the commodity mapping then provide a mapping from the full list of commodities to the household
commodities. Unlike a true transition matrix—a supplied commodity can be mapped only once to a consumed
commodity.

Other

The Other worksheet contains information on the other SAM accounts, i.e. all of those that are neither activities
nor commodities. Users are free to change the labels and the descriptors, but not the number of accounts. There
are a number of subsets associated with these accounts that the user might change—although with extreme caution.
These are listed below:

Table 4.4: Modifiable user sets

Subset Description

fd Domestic final demand agents

h Households

f Other domestic final demand agents

fp Factors of production

lab Labor types

ul Unskilled labor types

cap Capital account

lnd Land account

nrs Natural resource account

inst Institutional accounts

entr Enterprise accounts

labels Used by the model, not to be changed

subset Used by the model, not to be changed

Macro data

The Macrodata worksheet contains base year information on population (by broad cohort), and various exchange
rates for the base year. It also contains a parameter that is used to calibrate the base year capital stock. It is the
average gross return on capital. The aggregate base year capital stock is then set equal to the sum across all activities
of payment to capital divided by the gross rate of return. Thus if the total capital remuneration is 1 700, and there
is an estimate that the average gross rate of return is 17 percent, the capital stock will be set to 10 000. There may
be independent estimates of the gross capital stock. The number entered in this worksheet should be consistent with
that independent estimate and the level of gross capital remuneration from the SAM.

Production elasticities

The user enters activity related input parameters in the ProdElas worksheet. The first column, oldShr, is used only to
calibrate the comparative static simulation. It contains an estimate of the share of Old capital in sectoral production.
In effect it is used to weight the Old and New production elasticities in the calibration of the comparative static
version of the model. Hence if the Old elasticity is 0 and the New elasticity is 1 and the share of Old capital is

6 Ideally, a full transition matrix approach would be used to map household demand to supplied commodities.
The approach taken here is a hybrid approach.
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assumed to be 0.8, the weighted elasticity will be 0.2 (0.8× 0 + 0.2× 1). The following table describes the remaining
columns that are mainly elasticities. Many must be specified by vintage type.7

Table 4.5: User-specified production elasticities

Name Description

sigmanr0 Top level CES elasticity between natural resource factor and net output bundle
sigmap0 CES elasticity between intermediate demand and value added (plus energy)
sigmav0 CES elasticity across factors of production (including energy)
sigmaul0 CES elasticity across unskilled labor types
sigmasl0 CES elasticity across skilled labor types
sigmak0 CES elasticity between capital and energy
sigmaks0 CES elasticity between capital and skilled labor bundle
sigmakb0 CES elasticity between mobile and fixed capital (normally zero)
sigmae0 Inter-energy CES elasticity
sigman0 Non-energy intermediate substitution elasticity
chiKF0 Share of capital in base SAM to allocate to fixed capital (normally zero)
rkf0 Base year return to fixed capital (normally 1)
omeganr0 Supply elasticity of sector specific factor (i.e. natural resource)
omegap0 Supply transformation elasticity of make matrix
invElas0 Dis-investment elasticity for sectors in decline

CommElas

The user enters commodity related input parameters in the CommElas worksheet. The following table describes
these that are all elasticities.

Table 4.6: User-specified commodity elasticities

Name Description

sigmas0 The CES aggregation elasticity for the make matrix
sigmam0 CES (Armington) elasticity between domestic and imported goods
sigmax0 CET transformation elasticity between domestic and export markets
sigmamg0 The substitution elasticity for the ’production’ of trade and transport services
omegam0 Import supply elasticity (normally infinity)
etae0 Export demand elasticity (normally infinity)

Final demand elasticities

The user enters final demand related input parameters in the FDElas worksheet. There are two tables of elasticities.
The top table contains the following:

The second table contains the income and price elasticities used to calibrate the household demand function.
Note that it is defined at the level of household commodities (indexed by k) and not at the level of all commodities.8

Dynamics

The Dynamics worksheet contains the default assumption regarding productivity and depreciation. There are six
columns that apply to the model’s activities.

7 The input vectors sigmakb0, chiKF0 and rfk0 were introduced for version 2.0c of the MANAGE model.
8 There are instances of SAM’s where some pass-through institutions, such as an ’Enterprise’ account consume

goods and services. The model assumes that only Armington agents purchase goods and services. One possible
solution is to treat these pass-through accounts as a household.
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Table 4.7: User-specified final demand elasticities

Name Description

sigmac0(h,k) Energy-non energy substitution for good k across households (used in the consumer
demand transition matrix)

sigmacaa0(h,k) Substitution across non energy demand for good k and household h (used in the
consumer demand transition matrix)

sigmacae0(h,k) Substitution across energy demand for good k and household h
sigmaf0(f) Substitution elasticity between energy and non energy in other final demand
sigmafaa0(f) Substitution across non energy demand for other final demand
sigmafae0(f) Substitution across energy demand for other final demand
epsL0(l) Aggregate labor supply elasticity by skill
omegaL0(l) Labor transformation elasticity by skill
epsK0(vint) Aggregate capital supply elasticity (only used in comparative static model)
omegaK0(vint) Capital transformation elasticity (only used in comparative static model)
omegatl0(vint) Aggregate land supply elasticity
omegat0(vint) Land transformation elasticity

The remaining two parameters in the worksheet relate to capital depreciation on the one hand (depr) and energy
efficiency improvement (AEEI ) for other domestic agents (e.g. households).

The WPrice worksheet contains assumptions about the exogenous world import and export prices.9 This would
normally be used to input price assumptions about key sectors such as energy and agriculture. The worksheet is
split into two panels. The left-panel has the exogenous assumptions about import prices. These should be entered in
level (or index) terms for all years. The model treats them as indices (i.e. only uses the implied growth rates). The
second panel contains the assumptions about export prices.

Standard distribution files

The model is ready for immediate use. Users can start with running the comparative static model (comp.gms). The
results will be stored in two CSV files—comp.csv and compsam.csv that can be read directly into Excel, or read
into an Excel pivot table. The file comp.xlsx shows an example of the latter with some pre-formatted tables.

The baseline simulation (bau.gms) needs to be run before any other dynamic simulation because it calibrates
some key variables needed for subsequent dynamic simulations. The two other dynamic simulations (DynNoShk.gms
and dynShock.gms) can be run in any order afterwards. The file maketab.gms merges the results from the baseline
and tariff reduction simulation and can be used as input to an Excel file.

The user can of course make changes to the input files. This can be done indirectly through the Excel file named
ISOBridge.xlsm (in which case the VBA macro needs to be run), or directly by editing one of the two input files
(ISOBase.dat and ISObauScn.dat).

The following table lists the files that are part of the standard distribution package—organized by cluster.

9 This worksheet was introduced with version 2.0c of the model.
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Table 4.8: User-specified dynamic assumptions

Name Description

exProd The model allows for an exogenous and uniform shift in each activities production possi-
bilities frontier and this will be captured in the exProd parameter that is used to update
the lambdan and lambdav parameters in the model. It is specified as a percent increase
per year.

alphaL, betaL There is an economy-wide (labor) productivity shifter used to calibrate to a given GDP
scenario in the baseline scenario. It is made sector-specific by a linear transformation,
where alphaL is an additive shifter and betaL is a multiplicative shifter. Thus if alphaL

is 0 and betaL is 1 for services, and alphaL is 2 and betaL is 1 for manufacturing, then
productivity in manufacturing will be 2 percentage points higher than in services. If
on the other hand alphaL is 0 and betaL is 2 in manufacturing, then productivity in
manufacturing will be twice as high than in services—no matter what the level is in
services. This can have unintended consequences. If services productivity is negative, it
would imply that manufacturing productivity would be twice as negative.

energyEff The energy efficiency parameter provides the improvement of energy use in each activity
(across all energy carriers). It is specified as a percent increase per year. Caution should
be taken in transformation sectors such as chemicals and petroleum refineries—as a large
share of the energy inputs in these sectors may not be burned as energy but transformed
into other products such as plastics and distillates.

yexo This parameter is typically used to implement an autonomous change in yields. It is an
efficiency factor linked to land use. A value of 1.5, for example, will increase the land
productivity factor by 1.5 percent per annum.

kprod This parameter is typically used to implement an autonomous change in capital produc-
tivity. It is an efficiency factor linked to capital use. A value of 1.5, for example, will
increase the capital productivity factor by 1.5 percent per annum. It can be used, for
example, in the livestock sector to capture exogenous improvements in the offtake rate
in meat production.
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Table 4.9: Files in the standard distribution package

Name Description
Core data files

ISOSAMv9.dat Data file containing full SAM and full SAM labels
ISOBase.dat Data file containing aggregation mappings, subsets, key model parameters
compscn.dat Dummy data file needed to run comparative static model with ’dynamic’ parameters
ISOBaUScn.dat Exogenous data file with various population and GDP scenarios for the period 2007

through 2100

Excel data preparation file
ISOBridge.xlsm Excel file that can be used to prepare the core data files (see above). It encapsulates

all the user input and a VBA macro can be implemented to create the core data files.
It is still in a beta version so caution must be used in changing its structure.

Core model files
cal.gms GAMS code that initializes model variables and calibrates model parameters.
model.gms GAMS code that contains model description including variable and parameter dec-

larations and equation specifications.
iterloop.gms GAMS code that is used between simulation periods to update exogenous variables

and provide starting values for endogenous variables.

Simulation files
comp.gms Standard and basic comparative static simulation file. Normally used for diagnostic

testing of the model.
dynamDef.gms Common code for dynamic simulation files.
bau.gms Baseline dynamic simulation file. Normally used to calibrate productivity.
dynNoShk.gms Baseline dynamic simulation file. Normally used for dynamic diagnostic testing of

the model. Its output should be identical to the standard baseline simulation output.
dynShock.gms Dynamic simulation file that reduces import tariffs by 50 percent between 2014 and

2025.

Post-simulation files
postsim.gms GAMS code that saves key simulation results into a CSV file.
Maketab.gms GAMS code that will merge multiple dynamic GDX output files into a single CSV

file.
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Appendix A

The CES and CET functions

This appendix describes in full detail the two functional forms most widely used in CGE models-the constant-
elasticity-of-substitution (CES) and constant-elasticity-of-transformation (CET) functions. CES functions are widely
used in demand functions where substitutability across different products and/or factors is needed and where the
main objective is to minimize cost. CET functions are broadly used to determine supply functions across different
markets where the main objective is to maximize revenues. The two are very similar in many ways and the algebraic
derivations below will be more detailed for the CES function.

A.1 The CES function

A.1.1 Basic formulas

In production, the CES function is used to select an optimal combination of inputs (either goods and/or factors)
subject to a CES production function. In consumer demand, the CES is used as a utility (or sub-utility) or preference
function. In either case, the purpose is to minimize the cost of purchasing the ’inputs’ subject to the production or
utility function. In generic terms the system takes the following form:

min
Xi

∑
i

PiXi

subject to the constraint:

V = A

[∑
i

ai(λiXi)
ρ

]1/ρ

The objective function represents aggregate expenditure. The constraint expression will be referred to as the CES
primal function. The parameter A is an aggregate shifter that can be used to shift the overall production function (or
utility function). Each input, Xi, is multiplied by an input-specific shifter, λi, that can be used to implement input-
specific productivity increases (for example biased technological change), or specific changes in consumer preferences.
The (primal) share coefficients, ai, are typically calibrated to some base year data and held fixed. The CES exponent,
ρ, is linked to the curvature of the CES function (and will be explained further below). For given component prices,
Pi, and a given level of production or utility V , solving the optimization program above will yield optimal demand
functions for the inputs, Xi.

The Lagrangian can be set up as:

L =
∑
i

PiXi + Λ

V −A[∑
i

ai(λiXi)
ρ

]1/ρ


Taking the partial derivative with respect to Xi and the Lagrange multiplier Λ yields the following system of
equations:

Pi = Λaiλ
ρ
iX

ρ−1
i A

[∑
i

ai(λiXi)
ρ

](1−ρ)/ρ

= ΛaiA
ρλρiX

ρ−1
i V 1−ρ
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V = A

[∑
i

ai(ΛiXi)
ρ

]1/ρ

Taking the first expression, it can be multiplied by Xi, and then summed. This of course is equal to the value of
the bundle, i.e. P.V , where P is the aggregate price:

P.V =
∑
i

PiXi = ΛV 1−ρAρ
∑
i

aiλ
ρ
iX

ρ
i = ΛV 1−ρV ρ = ΛV

This shows that Λ, the Lagrange multiplier is the same as the aggregate price, P . We can re-arrange expression
above to get an expression for optimal input demand, where Λ is replaced by P :

Xi = a
1/(1−ρ)
i Aρ/(1−ρ)

(
P

Pi

)1/(1−ρ)

λ
ρ/(1−ρ)
i V

We finally end up with the following expression, where the CES primal exponent, ρ, is replaced by the so-called
CES elasticity of substitution, σ:

Xi = αi(Aλi)
σ−1

(
P

Pi

)σ
V (A.1)

where we made the following substitutions:

σ =
1

1− ρ ⇔ ρ =
σ − 1

σ
⇔ ρ

1− ρ = σ − 1⇔ ρ.σ = σ − 1

and
αi = a

1/(1−ρ)
i = aσi ⇔ ai = α

1/σ
i

Abstracting from the technology parameters, the demand equation implies that demand for ’input’ Xi is a
(volume) share of total demand V . The share, with equal prices is simply equal to αi. With a positive elasticity of
substitution, the share is sensitive to the ratio of prices relative to the aggregate price index. Since the component
price is in the denominator, the demand for that component declines if its price rises relative to the average and vice
versa if its price declines vis-à-vis the average price. The α parameters will be referred to as the CES dual share
parameters (for reasons described below), and the a parameters are the primal CES share parameters. Notice that
expression (A.1) simplifies if it is expressed in terms of efficiency inputs, Xe and efficiency prices, P e:

Xe
i = αiA

σ−1

(
P

P ei

)σ
V

where

Xe
i = λiXi

and

P ei =
Pi
λi

The aggregate price P can be determined using two expressions. The first is the zero profit condition:

P =

∑
i

PiXi

V

The other is by inserting the optimal demand relation Xi (equation A.1) in the zero profit condition :

P.V =
∑
i

PiXi = Aσ−1
∑
i

Piαi

(
P

Pi

)σ
λσ−1
i V = PσAσ−1V

∑
i

αi

(
Pi
λi

)1−σ

The V ’s cancel out, and the aggregate price can then be expressed by the following formula:

P =
1

A

[∑
i

αi

(
Pi
λi

)1−σ
]1/(1−σ)

=
1

A

[∑
i

αi (P ei )
1−σ
]1/(1−σ)

(A.2)

This is sometimes referred to as the dual price expression. It has virtually the same functional form as the CES
primal, which is a CES aggregation of the input volumes using the primal share parameters as weights. The CES
dual price formula is a CES aggregation of the input prices using the CES dual share parameters as weights and a
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different exponent. In a CGE model, the zero-profit condition or the dual price formula can be used interchangeably
(with the proviso that the substitution elasticity differs from 1).1 There is a simple formula for the budget shares
given by:

si =
PiXi
P.V

= αi(Aλi)
σ−1

(
P

Pi

)σ
V

(
Pi
P

)
1

V
= αi(Aλi)

σ−1

(
P

Pi

)σ−1

(A.3)

Notice that this expression for the budget shares is only a function of prices. With the technology parameters
set to 1, this simplifies further to:

si = αi

(
P

Pi

)σ−1

It turns out that the parameter σ measures the elasticity of substitution for the CES function and is constant
over the entire domain. The elasticity of substitution is an indication of the curvature of an isoquant, see Varian
(1992), i.e. it measures the rate of change of the ratio of inputs (in a 2-input case), relative to the change in their
relative prices. For example, if the CES combines capital and labor to form output, a large substitution elasticity
suggests that the factor proportions will change rapidly as one of the inputs becomes cheaper relative to the other.
There are two limiting cases of interest. If the substitution elasticity is zero, then there is no substitution across
inputs and the optimal choice is to use them in fixed proportion. At the other extreme, if the substitution elasticity
is infinite, this is equivalent to saying the inputs are identical, and in this case, in equilibrium, the two inputs would
have the same price. This could potentially be the case for electricity production. If there is a regional or national
buyer of electricity, the buyer is most likely indifferent about how the electricity is produced and thus will purchase
from the lowest cost producer (a perhaps somewhat simplified view of electricity markets.) This implies that the cost
of the electricity inputs, from all sources (e.g. thermal, nuclear, etc.) would be (nearly) identical.

The elasticity of substitution across inputs is defined by the following formula:

σ =
∂
(
Xi
Xj

)
∂
(
Pi
Pj

)
(
Pi
Pj

)
(
Xi
Xj

)
The ratio of the optimal inputs using expression (A.1) is:

αi
αj

(
Pi
Pj

)−σ(
λi
λj

)σ−1

Taking the partial derivative of the expression with respect to the ratio Pi/Pj and multiplying it by the second
term of the elasticity of substitution yields the conclusion that the substitution elasticity is −σ. It is logical that it is
negative. If the price of one input increases, say labor, relative to the other, say capital, producers would substitute
away from labor towards capital, i.e. the ratio of labor to capital would drop as the price of labor increases relative
to capital. Varian (1992) in fact defines the elasticity of substitution in terms of the absolute value of the technical
rate of substitution, that measures the slope of the budget line. Numerically what it represents is the relative change
in the ratios. If σ is 1, for example, and the price of labor increases by 10 percent relative to capital, the labor to
capital ratio would decrease by (around) 10 percent.2 The higher is σ, the more the proportion changes.

A.1.2 Special cases

There are three special cases that require additional derivations due to numerical restrictions on the primal and dual
exponents. A substitution elasticity of 0 is clearly a special case and is referred to as a Leontief technology. From
the dual price formula, it is clear that σ equal to 1 is a special case and is known as a Cobb-Douglas technology (or
utility function). Finally, a value of ρ equal to 1 corresponds to infinite substitution elasticity and a linear primal
aggregation function. This is also referred to as a case of perfect substitution.

1 We shall see below that when the substitution elasticity is 1, both primal and dual expressions take a different
functional form.

2 The elasticity is a marginal concept that holds only approximately for large changes.
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The Leontief case

The first special case is for the so-called Leontief functional form.3 In this case the substitution elasticity is 0 and
corresponds to a value for ρ that is −∞. In this case the optimization program takes the following form:4

min
Xi

∑
i

PiXi

subject to the constraint:

V = min

(
ai
λiXi

)
The visual implementation has L-shaped isoquants. The Leontief technology constraint or production/utility

function is discontinuous. Fortunately, the optimal demand functions are easy to implement and are just special
cases of expression (A.1):

Xi =
αi
λi

V

A

P =
1

A

∑
i

αi

(
Pi
λi

)
Thus the Leontief specification implies that inputs are always in fixed proportion relative to output and the

aggregate price is simply the linear weighted aggregation of the input prices, where the weights are given by the input-
output coefficients, adjusted by changes in efficiency. The efficiency parameter has a nice intuitive interpretation in
this case. Say λ increases by 10 percent, then demand for the input declines by 10 percent.

The Cobb-Douglas function

Another special case is the so-called Cobb-Douglas function, very frequently used in introductory text books in
microeconomics. The Cobb-Douglas function has a substitution elasticity of 1 implying that ρ is equal to 0. Clearly,
this creates a problem for specifying the CES primal function as well as the CES dual price function. As with the
Leontief, the optimal demand conditions are given by expression (A.1), with σ set to 1:

Xi = αi

(
P

Pi

)
V ⇔ si =

PiXi
P.V

= αi

The Cobb-Douglas specification has constant budget shares irrespective of relative prices (and changes in tech-
nology). Another implication of the Cobb-Douglas specification is that the dual shares must add up to 1 as they are
equivalent to the budget shares. By definition, as well, the primal and dual shares are the same. The Cobb-Douglas
primal and dual price functions have the following expressions:

V = A
∏
i

(λiXi)
αi

P =
1

A

∏
i

(
Pi
αiλi

)αi

Rather than code the Cobb-Douglas function as a special case, many modelers choose to replace the elasticity
of 1 with a value close to 1 such as 1.01. This would have only marginal repercussions on the results.

Perfect substitution

The third special case is for a substitution elasticity of infinity. In this case ρ takes the value of 1 and the primal
function is a straight linear aggregation of the inputs. The optimal demand conditions cannot be used in the case of
an infinite substitution elasticity. In its stead, the optimal demand condition is replaced with the law-of-one-price,
adjusted by efficiency differentials, and the zero profit condition is replaced with the CES primal function, i.e. the
linear weighted aggregation of the inputs:

Pi
αiλi

= P

3 Leontief, winner of the 1973 Nobel prize in Economics, is renowned for his work on input-output tables, much
of which focused on fixed input technologies (!!!! reference).

4 !!!! need a reference
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V =
∑
i

αiλiXi

The aggregation function can be replaced by the zero profit condition:5

P.V =
∑
i

PiXi

A.1.3 Calibration of the CES function

Standard calibration

Calibration typically involves inverting functional forms to evaluate the value of a parameter given initial values for
variables. Prices and volumes, Pi, Xi, V and P , are normally initialized to a given database or SAM. This may or may
not include actual price/volume splits. If not, prices will typically be initialized at unit value—potentially adjusted
for a price wedge such as a tax or a margin. The substitution elasticities are also normally inputs—either derived
from econometric estimation, other data bases or models, or from a literature review. This leaves the parameters λi,
αi and A to calibrate. The technology parameters are normally associated with dynamics, so there is little reason
not to initialize them to unit value as they can be incorporated in the initial share parameter value without any loss
in generality. Thus, the only parameters left to calibrate are the αi from which it is possible to derive the primal
share parameters, ai, if needed. The calibration formula is derived from the inversion of equation (A.1):

αi =

(
Xi
V

)(
Pi
P

)σ
(A.λi)

1−σ =

(
Xi
V

)(
Pi
P

)σ
The right-most term is the most used formula where the technology parameters are explicitly set to 1.6

An alternative calibration

An alternative, that is used in many CGE models, is to assume that the primal shares sum to 1.7 In this case, the
aggregate shifter, A, also needs to be calibrated and only exceptionally would be equal to 1. Using the definitions
above, this implies the following restriction: ∑

i

ai =
∑
i

α
1/σ
i = 1

Using equation (A.1), the restriction can be used to calibrate the A parameter (assuming the component specific
technology shifters are equal to 1):

αi = A1−σ
(
Pi
P

)σ
Xi
V

α
1/σ
i = A(1−σ)/σ

(
Pi
P

)(
Xi
V

)1/σ

1 =
∑
i

α
1/σ
i =

A(1−σ)/σ

P.V 1/σ

∑
i

PiX
1/σ
i

The calibrated A parameter is then given by the following expression:

A =

 P.V 1/σ∑
i

PiX
1/σ
i


σ/(1−σ)

5 Modelers have the choice of using the primal aggregation function or the revenue function. The latter holds in
all three special cases for the substitution elasticity.

6 In many introductions to CGE models, the calibration formulas explicitly exclude the price term. This is a
dangerous practice that can lead to model bugs that can be hard to detect. It is best to explicitly initialize
prices to 1 and use the correct calibration formula. In fact, one way to test model calibration and specification
is to initialize prices to an arbitrary value and initialize volumes subject to these prices. Simulating a counter-
factual with no shocks should replicate the initial data solution. If not, there is an error in initialization,
calibration and/or specification.

7 See for example Devarajan et al. (1997), Lofgren et al. (2002), Lofgren et al. (2013).
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Inserting the expression for A, the α parameters can be calibrated using the following:

αi =

 P.V 1/σ∑
i

PiX
1/σ
i


σ(

Pi
P

)σ
Xi
V

=
Pσi Xi[∑

i

PiX
1/σ
i

]σ
A.1.4 Calibration example

The example will show the calibration of the Armington function. The Armington function combines domestically
produced goods, XD , with imported goods, XM , to form the so-called Armington aggregate good, XA. Their
respective prices are PD , PM , and PA. Assume that prices are initialized at 1 and XD and XM are respectively 80
and 20. Table A.1 shows the calibrated parameters under both calibration options with an elasticity of 2. With
unitary prices the dual share parameters are equal to the budget shares when calibrating under option 1. The primal
share parameters sum to 1 under option 2 (but are not equal to the budget shares).

Table A.1: Calibration example of Armington function with unitary prices

Dual shares Primal shares
Shifter Domestic Imported Domestic Imported

1.0 0.8 0.2 0.8944 0.4472
1.8 0.4444 0.1111 0.6667 0.3333

Now, let’s assume that the value shares are identical, but that the price of imports is no longer 1, but 1 plus an
import tariff. Border prices are initialized at 1, but end-user prices are tariff inclusive. Assume that the tariff is 25%,
than the volume of imports is not 20, but 16. The calibrated parameters then take the values in Table A.2. The dual
share parameters no longer sum to unity, i.e. they are no longer equivalent to the budget shares.8 The primal shares
still sum to 1, by design, but are not the same as when all prices are unitary, nor do they line up with the budget
shares.

Table A.2: Calibration example of Armington function with non-unitary prices

Dual shares Primal shares
Shifter Domestic Imported Domestic Imported

1.0 0.8 0.25 0.8944 0.5
1.944 0.4114 0.1286 0.6414 0.3586

A.1.5 Alternative functional forms

In single country CGE models, the Armington specification could take the following form:

XD = αdAσ−1XA

(
PA

PD

)σm

XM = αmAσ−1XA

(
PA

PM

)σm

PA.XA = PD .XD + PM .XM

or

PA =
1

A

[
αdPD1−σm

+ αmPM 1−σm
]1/(1−σm)

8 The domestic share parameter is nonetheless equal to the budget share because both its price and the Armington
price are still assumed to be unitary.
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with the assumption that A is equal to 1 in the base year. Heuristically, one can think of these equations as determining
XD , XM and PA, given the component prices, PD and PM , and the overall level of Armington consumption, XA.
Many other modelers use the following set of equations to implement the Armington assumption (for example see
Lofgren et al. (2013)):9

XM

XD
=
αm

αd

(
PD

PM

)σm

=

(
am

1− am
PD

PM

)1/(1−ρm)

XA = A[amXM ρ + (1− am)XDρ]1/ρ

PA.XA = PD .XD + PM .XM

One can think of the first equation as determining XM . The second equation determines XD as XA is exogenous
in this system. And the third is the standard zero profit condition. Which set of equations one uses is irrelevant—the
systems are identical. The first set has several attractive features. First, the entire system can be written strictly in
terms of the substitution elasticity and the dual share parameters. There is no need to carry around the primal share
parameters nor the primal exponent. Second, it more easily lends itself to generalization. Its generic formulation
readily lends itself to more than two components and no restrictions are imposed on the parameters.

A.1.6 Normalized CES

It is sometimes the case that the CES is badly scaled, particularly when working with actual price/volume splits.
One work-around is to normalize all variables such that they are all equal to 1 in the base case—X̄ = X/X0 = 1,
where X0 is a base level. The CES equations become:

Xi,0X̄i = αi(Aλi)
σ−1

(
P0P̄

Pi,0P̄i

)σ
V0V̄

P0P̄ =
1

A

[∑
i

αi

(
Pi,0P̄i
λi

)1−σ
]1/(1−σ)

The initial values can be collected to yield the following expressions:

X̄i = αi

(
V0

Xi,0

(
P0

Pi,0

)σ)
(Aλi)

σ−1

(
P̄

P̄i

)σ
V̄

P̄ =
1

A

[∑
i

αi

(
Pi,0
P0

)1−σ (
P̄i
λi

)1−σ
]1/(1−σ)

Define the following parameter:

χi =
V0

Xi,0

(
P0

Pi,0

)σ
=

1

si,0

(
Pi,0
P0

)1−σ

where si is the initial value share defined above. The demand expression can be converted to:

X̄i = αiχi(Aλi)
σ−1

(
P̄

P̄i

)σ
V̄

Given the calibration formula, it is the case that αiχi = 1. It may be nonetheless useful to carry both terms if
technology or preference shifters are embodied in the α terms.

The price index expression can be written as:

P̄ =
1

A

[∑
i

si,0αiχi

(
P̄i
λi

)1−σ
]1/(1−σ)

If we do not need to carry through the original calibrated share parameters, we can write the two expressions as:

X̄i = (Aλi)
σ−1

(
P̄

P̄i

)σ
V̄

9 In the Lofgren et al. (2013) formulation, the primal exponent, ρ, has the opposite sign.
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P̄ =
1

A

[∑
i

si,0

(
P̄i
λi

)1−σ
]1/(1−σ)

Both expressions are now only a function of the normalized variables and the base year shares. Any subsequent use
of the variables requires re-scaling, for example Xi,0X̄i.

A.1.7 Comparative statics

Elasticities

This section will derive some of the key elasticities of the CES function. The first relationship is the elasticity of the
aggregate price with respect to a component price:

∂P

∂Pi

Pi
P

= si =
PiXi
P.V

The elasticity of the aggregate price relative to an input price is equal to the budget share, irrespective of the
substitution elasticity. The matrix of own- and cross-price elasticities, holding the aggregate volume constant is given
by the following formula:

εij =
∂Xi
∂Pj

Pj
Xi

= σ(sj − δij)

where δij is the so-called Kronecker’s delta that takes the value 1 for i equal to j, else it takes the value 0. Since σ
is positive, all components are gross substitutes in the CES.

Example: Trade elasticities

In this section we derive the elasticity of demand for a good sourced in region s, using the standard dual nested
Armington formulation. Let XA be the top level Armington demand for a commodity that is derived from a generic
demand function—for example an LES, with an associated price PA. The Armington demand is split into two
components, XD , a domestic good, and XMT , an aggregate (or composite import demand), with prices PD and
PMT respectively. The aggregate import bundle, XMT , is broken out by region of origin to determine XM s, import
from region s, with a domestic import price of PM s (i.e. the landed or CIF price tariff inclusive).

Given XA, the following equations determine the top-level demand system, where σm is the top-level substitution
elasticity (i.e. between the domestic goods and aggregate imports):

XD = αd
(

PA

PD

)σm

XA (A.4)

XMT = αm
(

PA

PMT

)σm

XA (A.5)

PA =
[
αdPD1−σm

+ αmPMT 1−σm
]1/(1−σm)

(A.6)

The next set of equations determines imports by region of origin, where σw represents the elasticity of substitution
for imports across region of origin:

XMs = αws

(
PMT

PMs

)σw

XMT (A.7)

PMT =

[∑
s

αws PMs
1−σw

]1/(1−σw)

(A.8)

The elasticity we would like to derive is the following:

εws = −∂XMs

∂PMs

PMs

XMs
(A.9)

In other words, by how much would demand for imports from region s change relative to a change in its own price
(including possibly a reduction (or increase) in the applied tariff).
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The starting point for the derivation is equation (A.7) from which it is possible to derive the following expression:

εws = −∂XMs

∂PMs

PMs

XMs
= −

[
(1− ss)σw −

∂XMT

∂PMs

PMs

XMT

]
= −

[
(1− ss)σw + ss

(
−∂XMT

∂PMT

PMT

XMT

)] (A.10)

Equation (A.10) shows that the trade elasticity is equal to the weighted average of the second-level Armington
elasticity and the elasticity of demand for aggregate imports relative to the aggregate price of imports, where the
weights are given by the import share of region s in total imports:

ss =
PMs ·XMs

PMT ·XMT

The final term in equation (A.10), not surprisingly takes the following form as derived from equation (A.5):

−∂XMT

∂PMT

PMT

XMT
= −

[
(1− sm)σm − ∂XA

∂PMT

PMT

XA

]
= −

[
(1− sm)σm + sm

(
−∂XA

∂PA

PA

XA

)] (A.11)

Similar to equation (A.10), equation (A.11) shows that the aggregate elasticity of import demand is the weighted
average of the top-level Armington demand and the overall price elasticity of the (Armington) demand with respect
to the (Armington) price, where the weight is given by the (aggregate) import share in total demand:

sm =
PMT ·XMT

PA ·XA
These equations use the following expressions that provide the elasticity of the composite CES price with respect to
its individual price components:

∂PMT

∂PMs

PMs

PMT
= ss

∂PA

∂PMT

PMT

PA
= sm

Finally, the trade elasticity is given by the following expression:

εws = −
[
(1− ss)σw + ss

(
(1− sm)σm + smε

d
)]

(A.12)

where

εd = −∂XA

∂PA

PA

XA

Formulas in percent differences

It is useful in terms of comparative static analyses to convert the basic equations into percent differences. It is easy
to trace out the impacts of a change in one of the ’exogenous’ variables on demand and the overall price index. This
is also the form of the equations used for models implemented in GEMPACK such as MONASH-style models.

The following expressions convey expressions (A.1) and (A.2) into their percent difference form:

∂Xi
Xi

= Ẋi = V̇ + σ
(
Ṗ − Ṗi

)
+ (σ − 1)

(
Ȧ+ λ̇i

)
∂P

P
= Ṗ = −Ȧ+

∑
i

siṖi −
∑
i

siλ̇i = −Ȧ+
∑
i

si
(
Ṗi − λ̇i

)
Thus the percent change in the unit cost, P , for a change in the input price, Pi, all else equal, is (approximately) the
value share of component i—as already noted above.

A.1.8 Growth Accounting

Use can be made of the linearization above to derive the linearized growth accounting formula:

∆V

V
=

∆A

A
+
∑
i

si
∆xi
xi

+
∑
i

si
∆λi
λi
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A.1.9 Parameter twists

The basic analytics

This final section on the CES describes how to adjust the share parameters in a dynamic scenario under a specific
assumption—this is called the twist adjustment and is a core feature of the dynamic MONASH model, see Dixon and
Rimmer (2002). The basic idea is to alter the share parameter, in a two-component CES, to target a given change in
the ratio of the two components, however, with neutral impacts on the aggregate cost. For example, the target may
be a cost-neutral increase in the capital/labor ratio by x%, or an increase in the import to domestic ratio of y%.

The ratio of the two components is given by the following expression using equation (A.1) as the starting point:

R =
α1λ

σ−1
1 P2

σ

α2λ
σ−1
2 P1

σ

The idea is to move the initial ratio, Rt−1 to Rt by tw percent.

Rt
Rt−1

= (1 + twt)

Using the formulas above, we have:

Rt
Rt−1

= (1 + twt) =

(
λ1,t

λ1,t−1

)σ−1

(
λ2,t

λ2,t−1

)σ−1 =
(1 + π1,t)

σ−1

(1 + π2,t)
σ−1

The π variables represent the growth (either positive or negative) that will be applied to the technology parameters
under the assumption of cost-neutral technological change. We can start with the dual cost function for year t, but
with year t− 1 prices:

P 1−σ
t−1 = α1

(
P1,t−1

λ1,t

)1−σ
+ α2

(
P2,t−1

λ2,t

)1−σ

= α1(1 + π1,t)
σ−1
(
P1,t−1

λ1,t

)1−σ
+ α2(1 + π2,t)

σ−1
(
P2,t−1

λ2,t

)1−σ

Recall that the share equation is given by:

si,t−1 = αiλ
σ−1
i,t−1

(
Pt

Pi,t−1

)σ−1

Dividing through the expression above by P 1−σ
t and inserting the share expressions for year t− 1, we end up with:

1 = s1,t−1(1 + π1,t)
σ−1 + s2,t−1(1 + π2,t)

σ−1

Solving in terms of π1, we have:

(1 + π1,t)
σ−1 =

1− s2,t−1(1 + π2,t)
σ−1

s1,t−1

and this can be inserted into the twist target formula to get:

1 + twt =
1− s2,t−1(1 + π2,t)

σ−1

s1,t−1(1 + π2,t)
σ−1 =

(1 + π2,t)
1−σ − s2,t−1

s1,t−1

Finally, π2 can be isolated to yield:

1 + π2,t = [s1,t−1(1 + twt) + s2,t−1]1/(1−σ) = [1 + s1,t−1twt]
1/(1−σ)

We can re-insert this into the expression above to derive an expression for π1:

1 + π1,t =

[
1 + s1,t−1twt

1 + twt

]1/(1−σ)

Finally, the productivity update formulas that incorporate the twist adjustment take the form:

λ1,t = (1 + π1,t)λ1,t−1 =

[
1 + s1,t−1twt

1 + twt

]1/(1−σ)

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 = [1 + s1,t−1twt]
1/(1−σ)λ2,t−1
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It is possible to generalize these formulas by partitioning the set of CES components into two sets—a set indexed
by 1 that is the target set, and a set indexed by 2 that is the complement. For example, think of a set of electricity
technologies that includes conventional and advanced. It is possible then to provide the same twist to all of the
new technologies relative to the conventional technologies. The only change in the formulas above is that the share
variable for the single component is replaced by the sum of the shares for the bundle of components:

λ1,t = (1 + π1,t)λ1,t−1 =

[
1 + twt

∑
i∈1 si,t−1

1 + twt

]1/(1−σ)

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 =

[
1 + twt

∑
i∈1

si,t−1

]1/(1−σ)

λ2,t−1

Converting to percent differences

The π factors reflect a percentage change in the relevant productivity factors for each of the components. Using a
Taylor series approximation, the formulas above can be converted to a linear equation that is used by the Monash-style
models. For the first component, we have:

π1 = F (tw) =

[
1 + s1tw

1 + tw

]1/(1−σ)

− 1 ≈ F (0) + tw.F ′(0) = −tw 1− s1

1− σ
For the second component we have:

π2 = F (tw) = [1 + s1tw]1/(1−σ) − 1 ≈ F (0) + tw.F ′(0) = tw
s1

1− σ

Note that in the Monash models, the signs are reversed because the productivity factors divide the volume components
whereas in the formulation above the productivity factors are multiplicative.

Examples of twisting the share parameters

We demonstrate these concepts with two examples. The first is a CES production function of capital and labor,
where the labor share is 60% and the capital/labor substitution elasticity (i.e. σ) is set to 0.9. Prices are initialized
at 1, therefore the original capital/labor ratio is 2/3. The target is to raise the capital/labor ratio 10% assuming
cost neutrality. Table A.3 shows the key results. Labor efficiency would increase by 48% and capital efficiency would
decline by 43%.

Table A.3: Example of capital/labor twist

Labor Capital Capital/labor ratio

Initial 60.0 40.0 0.6667
After twist 57.7 42.3 0.7333
Percent change -3.8 5.8 10.0
Growth factor 0.48 -0.43

The second example comes from trade and the Armington assumption. Assume an 80/20 split between domestic
goods and imports in value and volume implying a ratio of imports to demand of domestic goods of 0.25. Table A.4
shows the twist parameters needed to achieve an increase in this ratio of 10 percent with an Armington elasticity
of 2. The preference parameter for imports increases by nearly 8 percent, while that for domestic goods decreases
by 2 percent.

A.1.10 Summary

In summary, the CES functional form is often used as a production (or sub-production) function that combines two
or more inputs to form output (or an intermediate composite bundle), under the assumption of cost minimization. It
is also frequently used to maximize utility (or sub-utility) over a set of two or more goods, again with the assumption
of cost minimization. Table A.5 highlights the two main expressions to emerge from the optimization—the derived
demand functions, Xi, and the CES dual price expression, P . The top row shows the expression with all technology
parameters initialized at 1, and the bottom row the most generic version.
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Table A.4: Example of Armington import/domestic twist

Domestic Import Import/domestic ratio

Initial 80.0 20.0 0.250
After twist 78.4 21.6 0.275
Percent change -2.0 7.8 10.0
Growth factor -0.02 0.08

Table A.5: Key equations for CES implementation

Demand Aggregate price

Basic Xi = αiV

(
P

Pi

)σ
P =

[∑
i

αiP
1−σ
i

] 1
1−σ

with full technology Xi = αi(Aλi)
σ−1V

(
P

Pi

)σ
P =

1

A

[∑
i

αi

(
P

λi

)1−σ
] 1

1−σ

A.2 The CET Function

A.2.1 The basic formulation

This section describes the constant-elasticity-of-transformation (CET) function. The CET function is often used
to describe a transformation frontier between two or more outputs. For example, a producer may produce two or
more products and decides how much of each to produce based on market conditions, i.e. relative prices. The CET
is often used to represent a producer’s decision on the allocation of output between domestic and foreign markets.
Another example is land supply, where land will be allocated across different uses according to the relative returns.
The transformation elasticity is assumed to be uniform between any pair of outputs and therefore is analogous to the
demand-based CES function described in detail above. The exposition of the CET will be much more succinct than
that of the CES because most of the derivations can be derived in a similar fashion.

The CET can be setup as a revenue maximization problem, subject to a transformation frontier:

max
Xi

∑
i

PiXi

subject to

V = A

[∑
i

gi(λiXi)
v

] 1/v

where V is the aggregate volume (e.g. aggregate supply), Xi are the relevant components (sector-specific supply),
Pi are the corresponding prices, gi are the CET (primal) share parameters, and ν is the CET exponent. The CET
exponent is related to the CET transformation elasticity, ω via the following relation:

ν =
ω + 1

ω
⇔ ω =

1

ν − 1

The transformation elasticity is assumed to be positive. Solution of this maximization problem leads to the
following first order conditions:

Xi = γi(Aλi)
−1−ω

(
Pi
P

)ω
V (A.13)

and

P =
1

A

[∑
i

γi

(
Pi
λi

)1+ω
] 1/(1+ω)

(A.14)

where the γi parameters are related to the primal share parameters, gi, by the following formula:
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γi = g−ωi ⇔ gi =

(
1

γi

)1/ω

From expression A.13, and ignoring the technology parameters for the moment, the clear difference with the CES
expression for optimal demand (equation A.1) is that the component price is in the numerator and the aggregate price
in the denominator. This is intuitively logical. If the supply price to a market goes up relative to the average market
price, one would anticipate that supply would increase to that market. The greater the transformation elasticity the
greater are the market shifts.

Calibration is similar to the CES case. Prices and volumes are initialized using base year data. Equation ( A.13)
can then be inverted to calculate the share parameters, γi, with typically the technology parameters initialized to
the value 1. In most implementations, there is no need to carry around the primal share parameters, nor the primal
exponent.

The main interesting case for the CET is the case of perfect transformation, i.e. the transformation elasticity
is infinity. In this case the CET exponent is 0 and the aggregation function is a linear weighted aggregation of
the components. The standard CET equations are then replaced by the law-of-one price and the linear aggregation
function (or alternatively, the zero profit condition).

Pi
Aλi

= P∀i

A
∑
i

λiXi = X

A.2.2 Converting to percent differences

It is easier to interpret or decompose the results of a simulation by looking at the CET equations in percent differ-
ences form—that is the standard form for MONASH-style models and implementation in GEMPACK. The following
equations show the equations in percent difference form:

∂Xi
Xi

= Ẋi = V̇ + ω
(
Ṗi − Ṗ

)
− (ω + 1)

(
λ̇i + Ȧ

)
∂P

P
= Ṗ = −Ȧ+

∑
i

siṖi −
∑
i

siλ̇i = −Ȧ+
∑
i

si
(
Ṗi − λ̇i

)
where the variable si is the value share of component i in total revenue:

si =
PiXi
P · V = γi

(
Pi

A · λi · P

)ω+1

A.2.3 Twists and the CET

It is relatively easy to show that the analogous twist formulas for the CET are:

1 + π1,t =

[
1 + twt

1 + s1,t−1twt

]1/(1+ω)

1 + π2,t =

[
1

1 + s1,t−1twt

]1/(1+ω)

A.3 The CRESH and CRETH functions

The CES and CET functions assume uniform pairwise substitution and transformation elastities. This section
describes a generalization of these two functions that allow for pairwise specific elasticities.

A.3.1 The CRESH function

The constant ratios of elasticities of substitution, homethetic (CRESH) function is a generalization of the CES function
that allows for pair-wise differences in the substitution elasticities. For example, assume that aggregate imports are
allocated across regions of origins using the Armington assumption. If there is a single CES nest, this implies that
the substitution across any two pairs of trading partners is identical, for example the substitution elasticity between
imports from France and Germany is identical to the substitution elasticity between France and Thailand. The
CRESH function allows to differentiate the substitution between any pair of inputs.
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Theoretical derivation

The CRESH production function was developed by Hanoch (Hanoch (1971)) and has been used in applied general
equilibrium models in the ORANI tradition (Dixon et al. (1982) and Dixon and Rimmer (2002)). The CRESH primal
function (production and/or demand) starts with an implicit functional form:

F (Xi, V ) =
∑
i

ci
ρi

(
AλiXi
V

)ρi
≡ K (A.15)

using the same notation as above where Xi are the inputs, λi are technology shifters and V is output. In this
formulation K is a calibrated parameter. We can see that if the exponents, ρi, are identical across all i, the CRESH
function becomes the CES function, where the primal parameters are given by ai = ci/(Kρ).

Cost minimization subject to the production constraint above yields the following Lagrangian:

L =
∑
i

PiXi − Λ

(∑
i

ci
ρi

(
AλiXi
V

)ρi
−K

)
Taking the partial derivative with respect to Xi and the Lagrange multiplier Λ yields the following system of equations:

Pi = ΛciX
ρi−1
i

(
Aλi
V

)ρi
(A.16)

∑
i

ci
ρi

(
AλiXi
V

)ρi
≡ K (A.17)

The first equation can be used to isolate Xi:

Xi =

(
ciΛ

Pi

)σi ( V

Aλi

)1−σi
= cσii (Aλi)

σi−1

(
1

Pi

Λ

V

)σi
V (A.18)

where we have the same relations as above between the primal exponents (ρ) and the dual exponents (σ):

σi =
1

1− ρi
⇔ ρi =

σi − 1

σi
⇔ ρi

1− ρi
= σi − 1⇔ ρi.σi = σi − 1

Given the form above that looks similar to the first order conditions for the CES, it appears natural to define a
variable P c to replace the ratio Λ/V :

Xi = αi (Aλi)
σi−1

(
P c

Pi

)σi
V (A.19)

where we make the following additional substitution:

αi = cσii

Plugging in equation (A.19) in the primal expression (equation (A.16)) we can derive an implicit function for the
variable P c:

∑
i

αi
Kρi

(
Pi

AλiP c

)1−σi
≡ 1 (A.20)

Equation (A.20) will be called the CRESH dual price expression that is clearly the counterpart to the CES dual price
equation. It will be shown below that P c is a price index, but that in only special cases will it equal the average
price. This implies:

P.V =
∑
i

PiXi 6= P c.V

We can express the ratio of P to P c as:

P

P c
=

1

P c

∑
i PiXi

V
=

1

P c
1

V

∑
i

[
Piαi (Aλi)

σi−1

(
P c

Pi

)σi
V

]
=
∑
i

αi

(
Pi

AλiP c

)1−σi

The formula for shares can be expressed as:

si =
PiXi
P.V

=
αi
(

Pi
AλiPc

)1−σi
P cV

P.V
=
P c

P
αi

(
Pi

AλiP c

)1−σi
(A.21)
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And given the expression for the price ratio above, the final expression for shares is:

si =

αi

(
Pi

AλiP c

)1−σi

∑
k

αk

(
Pk

AλkP c

)1−σk
(A.22)

We can recover an expression for the Lagrangian multiplier, Λ, starting with equation (A.16). Multiply each side
by the ratio of Xi/ρi and take the sum over i. The right-hand side will evaluate to KΛ and thus we have:

Λ =
∑
i

PiXi
Kρi

(A.23)

In the case of a uniform σ, it can be shown that the price ratio, P/P c is constant, i.e. the percentage change of
each is identical and the ratio only depends on initialization. The expression for the ratio of the two prices in the
case of uniformity is:

P

P c
= (P c)σ−1

∑
i

αi

(
Pi
Aλi

)1−σ

The dual price expression becomes:

∑
i

αi

(
Pi
Aλi

)1−σ

= Kρ (P c)1−σ

Substituting out the summation term, the resulting expression is:

P

P c
= (P c)σ−1 Kρ (P c)1−σ = Kρ

In most many cases with default initializations, the product of Kρ will equal 1. In this case, with a uniform
substitution elasticity, there is a one-to-one correspondence between the CRESH (CES) price index, P c, and the
average price, P .

The own- and cross-price elasticities can be derived from equation (A.19):

εij =
∂Xi
∂Pj

Pj
Xi

= σi
∂P c

∂Pj

Pj
P c
− σiδij (A.24)

One of the consistency requirements of the matrix of elasticities is that the inner product of each column with
the column shares must equal 0: ∑

i

εijsi = 0

where si represents the input shares. This implies the following:∑
i

εijsi =
∑
i

si

[
σi
∂P c

∂Pj

Pj
P c
− σiδij

]
= 0

The elasticity expression for the price index can then be isolated to yield:

∂P c

∂Pj

Pj
P c

=
sjσj∑
i siσi

The matrix of own- and cross-price elasticities is therefore:

εij = σi

[
sjσj∑
k skσk

− δij
]

(A.25)

The ES (Allen-Uzawa pairwise partial ES) are related to the demand elasticities using the following expression:

σaij =
εij
sj

=
σiσj∑
k skσk

− σiδij
sj

(A.26)
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Implementation in levels

Calibration is relatively straightforward. Given the σ parameters the ρ parameters can be calibrated. Equation (A.19)
can be used to calibrate the CRESH dual share parameters, αi, given initial values for A, λi, V , Pi, Xi and P c.
If prices and the technology variables are initialized at 1, the share parameters will reflect the initial value shares.
The primal share parameters are calibrated using ci = α

1/σi
i . Finally, K can be calibrated using the CRESH primal

function, equation (A.15).
Model implementation uses only two equations, equation (A.19) and (A.20) where the endogenous variables are

Xi and P c, given V , Pi and the parameters of the function.

Converting to percent differences

The CRESH demand function is not easy to interpret. In the ORANI/MONASH tradition, a linearized form can
be derived that helps with the interpretation of the changes in input demand (Xi) and also eliminates Λ from the
expression.

The linearized form of equation (A.19) is the following:

Ẋi = V̇ + (σi − 1)Ȧ+ (σi − 1)λ̇i + σiṖ c − σiṖi (A.27)

Similarly, the linearized version of the dual price expression, equation (A.20) takes the following form:∑
j

Bj
σj − 1

ρj

[
Ṗj − Ȧ− λ̇j − Ṗ c

]
≡ 0

where (after elimination of the parameter K):

Bj = αj

(
Pj

AλjP c

)1−σj

Further, the Bj can be divided by the sum of the Bj and thus be transformed into the shares, sj . As well, the
expression (σj − 1)/ρj can be replaced with σj . This leads to the following formula for the change in the CRESH
price index:

Ṗ c =

∑
j

sjσj
[
Ṗj − Ȧ− λ̇j

]
∑
k

sjσj

Define a modified cost share parameter using the following formula:

ςj =
σjsj∑
k σksk

(A.28)

Then the log-linearized expression for the CRESH price index simplifies to the following:

Ṗ c =
∑
j

ςjṖj −
∑
j

ςj λ̇j − Ȧ (A.29)

Inserting equation (A.29) into equation (A.27) yields the final expression for the percent change in Xi as a function
of the change in the aggregate volume, V , the component prices, Pi, and changes in technology or preferences, A and
λi:

Ẋi = V̇ − Ȧ− σi

[
Ṗi −

∑
j

ςjṖj

]
+ σi

[
λ̇i −

∑
j

ςj λ̇j

]
− λ̇i (A.30)

This final expression is very similar to the linearized expression in Dixon and Rimmer (2002), equation (26.13)
on page 221. The main difference is that the technology parameters, λi, are expressed as multiplicative factors of the
inputs whereas in the Dixon and Rimmer volume they are expressed as inverses—thus the reversal in sign.10 This
requires some interpretation when undertaking technology shocks. For example, a 10 percent improvement in labor
efficiency using the interpretation of this volume leads to the following expression:

λt = 1.1λt−1

10 The expression also incorporates the aggregate technology shifter represented by the variable A.
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Using the Dixon and Rimmer interpretation, the same shock is implemented as:

Bt = Bt−1(1− 0.1/1.1) = 0.9091Bt−1

Or more generally, a δ percent shock in this volume translates to a shock of −δ/(1 + δ) percent shock in Dixon and
Rimmer. Similarly, if the Dixon and Rimmer shock is ∆, assumed to be positive, this translates into a shock of
∆/(1−∆). So a ten percent Dixon and Rimmer shock is equal to a 11.1 percent shock using the multiplicative form
of technological change.

A.3.2 The CRETH function

The constant ratios of elasticities of transformation, homethetic (CRETH) function is an analogous generalization of
the CET function that allows for pair-wise differences in the transformation elasticities. This section lists the main
results without the same level of detail as for the CRESH functional form. The CRETH primal function starts with
an implicit functional form:

F (Xi, V ) =
∑
i

bi
νi

(
AλiXi
V

)νi
≡ K (A.31)

using the same notation as above where Xi are the supply components, λi are technology or preference shifters and
V is total supply. In this formulation K is a calibrated parameter. We can see that if the exponents, νi, are identical
across all i, the CRETH function becomes the CET function, where the primal parameters are given by gi = bi/(Kν).

The CRETH specification can be implemented with two sets of equations. The first determines the allocation of
component i and is virtually identical to its CET counterpart with the caveat that the price index in the denominator,
P c, is not equal to the aggregate price, similar to the price index of the CRESH function. The second is the CRETH
dual price expression that provides an implicit definition of the CRETH price index, P c.

Xi = γi (Aλi)
−ωi−1

(
Pi
P c

)ωi

V (A.32)

∑
i

γi
Kνi

(
Pi

AλiP c

)1+ωi

≡ 1 (A.33)

where we make the following additional substitutions:

γi = b−ωi
i

ωi =
1

νi − 1
⇐⇒ νi =

ωi + 1

ωi

Similarly in percent differences these equations become:

Ẋi = V̇ − Ȧ+ ωi

[
Ṗi −

∑
j

ςjṖj

]
− ωi

[
λ̇i −

∑
j

ςj λ̇j

]
− λ̇i (A.34)

Ṗ c =
∑
j

ςjṖj −
∑
j

ςj λ̇j − Ȧ (A.35)

where the modified share parameter is given by:

ςj =
ωjsj∑
k ωksk

(A.36)

A.4 Modified CES and CET that incorporate additivity

The standard CET supply allocation specification does not preserve physical additivity, i.e. the sum of the volume
components is not necessarily equal to the total volume. There are a number of alternative specifications that do
preserve volume homogeneity, for example the multinomial logit. One alternative, described below, uses a modified
form of the CET preference function. This specification has been used for labor and land supply allocations (see
respectively Dixon and Rimmer (2006) and Giesecke et al. (2013)).
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A.4.1 The CET implementation

The CET alternative involves solving the following optimization:

max
Xi

U =

[∑
i

gi (λiPiXi)
ν

]1/ν

subject to the constraint:

V =
∑
i

Xi

The variable definitions are similar to above, Xi are the volume components, Pi are the relevant component prices
and V is aggregate volume. The λi parameters are preference parameters. The CET utility function is not simply a
function of the volumes, but explicitly a function of the preference-adjusted revenues of the individual components.
The closed-form solution to the above system is the following set of equations:

Xi = γiV

(
λiPi
P c

)ω
(A.37)

P c =

[∑
i

γi (λiPi)
ω

]1/ω

(A.38)

Both equations are similar to their standard CET counterparts, but with some differences. First, P c is a price index,
but it is not the average price of the components, i.e. P cX 6=

∑
i PiXi. Second, this price index is based on ω not

1 + ω as in the standard CET dual price expression. The revenue correct price index is defined by the following
formula:

P =

∑
i

γiλ
ω
i P

ω+1
i∑

i

γiλωi P
ω
i

=

∑
i

γiλ
ω
i P

ω+1
i

(P c)ω
=
∑
i

γiPi

(
λiPi
P c

)ω
=
∑
i

Xi
V
Pi (A.39)

The other transformations include:

γi = gi
1+ω

ω =
ν

1− ν ⇐⇒ ν =
ω

1 + ω

It is worth noting that the relation between ω and ν differs from the standard CET relation as the respective formula
is inverted. The implication of this is that ν is bounded below by 0 instead of ∞, but is otherwise positive over the
entire (positive) range of ω. And, in both the standard and adjusted CET ν converges to 1 as ω converges to ∞. As
regards calibration, there is an extra degree of freedom as the value for utility is not specified. It is easiest to simply
set P c to 1 as for given Pi and λi the calibration of the γ parameters is straightforward:

γi =
Xi
V

(
λiPi
P c

)−ω
If prices and technology or preference parameters are initialized at 1, the calibrated γ parameters are equal to the
initial volume shares.

Converting this to a Monash-style equation in percent differences, the derived supply function is:

Ẋi = V̇ + ω

[
Ṗi + λ̇i −

n∑
j=1

Xj
V

(
Ṗj + λ̇j

)]
This equation uses volume shares as weights for cross-price (and cross-preference) effects. In the standard CET
formulation, value shares are used as weights.

The standard specification needs some modifications for two special cases—perfect transformation and perfect
immobility. The case of perfect transformation, i.e. a transformation elasticity of ∞, leads to all prices moving in
unison with the aggregate price index. Thus equation (A.37) is replaced with the following expression:

λiPi = P c

where λi is calibrated to the initial price ratios. The price index expression, equation (A.38) is replaced with the
volume constraint:
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V =
∑
i

Xi

In the model implementation of the adjusted CET, this latter expression can be used in all cases and can replace
equation (A.38).

The case of zero mobility is readily implemented by dropping completely equation (A.38) (or its equivalent, i.e.
the volume adding up constraint). With a transformation elasticity of 0, the price composite index in equation (A.37)
simply drops out and the volume components are in strict proportion to the aggregate volume.

A.4.2 ACET and twists

It is relatively easy to show that the analogous twist formulas for the ACET are:

1 + π1,t =

[
1 + twt

1 + s1,t−1twt

]1/ω

1 + π2,t =

[
1

1 + s1,t−1twt

]1/ω

where the volume shares replace the value shares from the standard CET twists and the exponent differs.11

A.4.3 Generalizing to CRETH utility function

The allocation mechanism described above can be generalized to a CRETH utility function that allows for pair-wise
transformation elasticities to differ. The optimization is setup according to the following:

maxU

subject to the constraints: ∑
i

ci
νi

(
λiPiXi
U

)νi
= K

V =
∑
i

Xi

In the case of the CRETH function, utility is defined implicitly.
The first-order equations can be transformed to yield the following set of equations that are readily implemented:

Xi = γi

(∑
j

Xj
νj

)(1+ωi)(
λiPi
U

)ωi

(A.40)

V =
∑
i

Xi (A.41)

These two equations determine jointly Xi and U . We also have the following set of relations:

γi =
( ci
K

)1+ωi

ωi =
νi

1− νi
⇐⇒ νi =

ωi
1 + ωi

⇐⇒ 1− νi =
1

1 + ωi

Calibration is relatively straightforward. For given initial values of Pi, Xi, λi and U , equation (A.40) can be
used to calibrate the share parameters, γi. The ci parameters can be recovered from the formula above linking the c
and γ parameters given a value for K, which without loss of generality can be set to an initial value of 1.

Similar to the formulas linking the primal exponent and the transformation elasticity for the CET, the relations
for the adjusted CRETH are different from the standard CRETH relations where the relation is ωi = 1/(νi − 1).

The formulas above can be transformed into equivalent equations that compare more readily to the CET-style
equations. First we can define P c using the following expression:

P c =
U∑
j

Xj

νj

11 These formulas are consistent with no change in the ACET composite price. However, the average price may
vary as well as utility.
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and this latter expression for P c can be substituted into equation (A.40). It can be shown subsequently that P c can
be defined implicitly by the equivalent of the CRETH dual price expression giving the following set of equations that
determines Xi and P c given only Pi (and the functional parameters):

Xi = γi

(∑
j

Xj
νj

)(
λiPi
P c

)ωi

(A.42)

∑
i

γi
νi

(
λiPi
P c

)ωi

= 1 (A.43)

The price index given by P c is defined implicitly in equation (A.43), and like in the case of the CET, it is not
necessarily equal to the average price of the aggregate volume. The other difference would be in the calibration of
the γ parameters. In the equations above, the γ parameters are adjusted by νi, whereas in the case of the CET
specification, the γ parameters integrate the (common) substitution parameter.

It turns out that the set of equations above, equations (A.42) and (A.43) are linearly dependent. For implemen-
tation purposes the model should implement equations (A.42) and (A.41).

In log-linear difference form, equation (A.42) becomes the following:

Ẋi =
∑
j

ξjẊj + ωi

[
Ṗi −

∑
j

ςjṖj

]
+ ωi

[
λ̇i −

∑
j

ςj λ̇j

]
(A.44)

where the weights are defined by the following formulas:

ξj =
Xj/νj∑
kXk/νk

ςj =
(1 + ωj)Xj∑
k (1 + ωk)Xk

Both sets of weights simplify to volume weights when the elasticities are uniform as in the case of the CET. The first
term on the right hand side aggregates two effects. The first effect is the aggregate volume increase, i.e. V̇ . The
second effect is a volume re-allocation effect. The expression can be converted to the following:

Ẋi = V̇ +
∑
j

ϕjẊj + ωi

[
Ṗi −

∑
j

ςjṖj

]
+ ωi

[
λ̇i −

∑
j

ςj λ̇j

]
(A.45)

where ϕ is defined by:

ϕj = ξj −
Xj
V

From this formula it is clear that the re-allocation effect is 0 in the case of the CET as the ξ weights are equated to
the volume shares.

A.4.4 The CES implementation

The adjusted CET (and CRETH) functions replace their counterparts for the allocation problem that preserves
additivity. Analogous specifications exist for the CES and CRESH functions that emulate the implementation of
their standard counterparts but also allow for additivity.

The CES alternative involves solving the following optimization:

min
Xi

U =

[∑
i

ai (λiPiXi)
ρ

]1/ρ

subject to the constraint:

V =
∑
i

Xi

As in the case of the adjusted CET, the adjusted CES utility function is a function of the preference adjusted cost
components. The closed-form solution to the above system is the following set of equations:

Xi = αiV

(
P c

λiPi

)σ
(A.46)
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P c =

[∑
i

αi (λiPi)
−σ

]−1/σ

(A.47)

Both equations are similar to their standard CES counterparts, but with some differences. First, P c is a price index,
but it is not the average price of the components, i.e. P cX 6=

∑
i PiXi. Second, this price index is based on −σ

not 1− σ as in the standard CES dual price expression. The revenue correct price index is defined by the following
formula:

P =

∑
i

αiλ
σ
i P

1−σ
i∑

i

αiλσi P
σ
i

=

∑
i

αiλ
σ
i P

1−σ
i

(P c)−σ
=
∑
i

αiPi

(
λiPi
P c

)−σ
=
∑
i

Xi
V
Pi (A.48)

The other transformations include:

αi = ai
1−σ

σ =
ρ

ρ− 1
⇐⇒ ρ =

σ

σ − 1

It is worth noting that the relation between σ and ρ differs from the standard CES relation as the respective formula
is inverted. The implication of this is that ρ is bounded below by 0 instead of −∞. It decreases towards −∞, as σ
increases towards 1, which is a discontinuity point. It decreases from ∞ towards 1 as σ increases from 1 to ∞.

It is relatively easy to show that the following simple expression holds for the utility function:

U = P cV (A.49)

As regards calibration, there is an extra degree of freedom as the value for utility is not specified. It is easiest to
simply set P c to 1 as for given Pi and λi the calibration of the α parameters is straightforward:

αi =
Xi
V

(
λiPi
P c

)σ
If prices and technology or preference parameters are initialized at 1, the calibrated α parameters are equal to the
initial volume shares.

Converting this to a Monash-style equation in percent differences, the derived demand function is:

Ẋi = V̇ − σ

[
Ṗi + λ̇i −

n∑
j=1

Xj
V

(
Ṗj + λ̇j

)]
This equation uses volume shares as weights for cross-price (and cross-preference) effects. In the standard CES
formulation, value shares are used as weights.

The normalized ACES

Similar to the standard CES formulation, one can normalize the variables so that they are all 1 at some reference
point. The normalized expressions are the following:

Xi = V

(
P c

λiPi

)σ
and

P c =

[∑
i

αi (λiPi)
−σ

]−1/σ

where the share parameters on the composite price index are the initial volume shares, i.e. αi = ri,0 = Xi,0/V0.

A.4.5 Using twists with the adjusted CES

The ’twist’ idea described for the normal CES can be applied to the adjusted CES. The concept is somewhat different
given the type of optimization problem posed. Rather than change the share parameters in a given direction with
cost neutrality, the idea is to change the share parameters with utility neutrality. The problem posed, therefore, is
to change the ratio of demand for two goods by a specified amount, while maintaining the same level of utility.

The ratio of the two components is given by the following expression using equation (A.46) as the starting point:
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R =
α1λ2P2

σ

α2λ1P1
σ

The idea is to move the initial ratio, Rt−1 to Rt by tw percent.

Rt
Rt−1

= (1 + twt)

while holding U constant. The two expressions above imply that the preference shifters, given by the π parameters,
are linked via the following expression:

1 + π2 = (1 + π1) (1 + tw)1/σ (A.50)

Given equation (A.49), holding U constant is equivalent to holding the price index, P c, constant as well (for a
fixed aggregate volume). Thus we can solve the following equation for the parameter π1:

(P ct−1)−σ = α1 (P1,t−1λ1,t−1)−σ + α2 (P2,t−1λ2,t−1)−σ

= α1 (P1,t−1λ1,t−1 (1 + π1,t))
−σ + α2 (P2,t−1λ2,t−1 (1 + π2,t))

−σ

= α1 (P1,t−1λ1,t−1 (1 + π1,t))
−σ + α2

(
P2,t−1λ2,t−1 (1 + π1,t) (1 + tw)1/σ

)−σ
= (P ct )−σ

The π variables represent the growth (either positive or negative) that will be applied to the preference parameters
under the assumption of utility-preserving preference shifts. This formula can be written in terms of the initial volume
shares, ri = Xi/V , simplified and re-arranged to yield:

(1 + π1)σ = r1 +
r2

1 + tw

and when re-inserted in equation (A.50) we get:

(1 + π2)σ =

(
r1 +

r2

1 + tw

)
(1 + tw)

The final formulas for the two twist parameters only depend on the initial volume shares, the substitution elasticity
and the level of the ’twist’:

π1 ==

[
1 + r1τ

1 + τ

]1/σ

− 1 (A.51)

π2 = [1 + r1τ ]1/σ − 1 (A.52)

It is possible to generalize these formulas by partitioning the set of CES components into two sets—a set indexed
by 1 that is the target set, and a set indexed by 2 that is the complement. For example, think of a set of electricity
technologies that includes conventional and advanced. It is possible then to provide the same twist to all of the new
technologies relative to the conventional technologies. The only change in the formulas above is that the volume
share variable for the single component is replaced by the sum of the volume shares for the bundle of components:

λ1,t = (1 + π1,t)λ1,t−1 =

[∑
i∈1

ri,t−1 +

∑
i∈2 ri,t−1

1 + tw t

]1/σ

λ1,t−1

λ2,t = (1 + π2,t)λ2,t−1 =

[∑
i∈1

(1 + tw t) ri,t−1 +
∑
i∈2

ri,t−1

]1/σ

λ2,t−1

Converting to percent differences

The π factors reflect a percentage change in the relevant productivity factors for each of the components. Using a
Taylor series approximation, the formulas above can be converted to a linear equation that is used by the Monash-style
models. For the first component, we have:

π1 = F (tw) =

[
r1 +

r2

1 + tw

]1/σ

− 1 ≈ F (0) + tw.F ′(0) = −tw r2

σ

For the second component we have:

π2 = F (tw) = [r1 (1 + tw) + r2]1/σ − 1 ≈ F (0) + tw.F ′(0) = tw
r1

σ
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A.4.6 Generalizing to CRESH utility function

The CES utility function described above can be generalized to a CRESH-style utility function that allows for pair-
wise substitution elasticities to differ. The optimization is setup according to the following:

maxU

subject to the constraints: ∑
i

ci
ρi

(
λiPiXi
U

)ρi
= K

V =
∑
i

Xi

In the case of the CRESH function, utility is defined implicitly.
The first-order equations can be transformed to yield the following set of equations that are readily implemented:

Xi = αi

(∑
j

Xj
ρj

)(1−σi)(
λiPi
U

)−σi
(A.53)

V =
∑
i

Xi (A.54)

These two equations determine jointly Xi and U . We also have the following set of relations:

αi =
( ci
K

)1−σi

σi =
ρi

ρi − 1
⇐⇒ ρi =

σi
σi − 1

As in the case of the CRETH, we can define a CRESH price index, P c, to get the final function forms:

Xi = αi

(∑
j

Xj
ρj

)(
P c

λiPi

)σi
(A.55)

∑
i

αi
ρi

(
λiPi
P c

)−σi
= 1 (A.56)

It turns out that the set of equations above, equations (A.55) and (A.56) are linearly dependent. For implemen-
tation purposes the model should implement equations (A.55) and (A.54).

In log-linear difference form, equation (A.55) becomes the following:

Ẋi =
∑
j

ξjẊj − σi

[
Ṗi −

∑
j

ςjṖj

]
− σi

[
λ̇i −

∑
j

ςj λ̇j

]
(A.57)

where the weights are defined by the following formulas:

ξj =
Xj/ρj∑
kXk/ρk

ςj =
(1− σj)Xj∑
k (1− σk)Xk

Both sets of weights simplify to volume weights when the elasticities are uniform as in the case of the CES. The first
term on the right hand side aggregates two effects. The first effect is the aggregate volume increase, i.e. V̇ . The
second effect is a volume re-allocation effect. The expression can be converted to the following:

Ẋi = V̇ +
∑
j

ϕjẊj − σi

[
Ṗi −

∑
j

ςjṖj

]
− σi

[
λ̇i −

∑
j

ςj λ̇j

]
(A.58)

where ϕ is defined by:

ϕj = ξj −
Xj
V

From this formula it is clear that the re-allocation effect is 0 in the case of the CES as the ξ weights are equated to
the volume shares.
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A.5 Summary

Figures A.1 and A.2 depict respectively the relation between the CES substitution elasticity, σ and its primal coun-
terpart ρ and the relation between the CET transformation elasticity, ω, and its primal counterpart, ν. The figures
clearly show the sharp departures of the respective curves for the standard version and the version that preserves
volume additivity for low values of the respective elasticities. The two curves eventually converge for higher elasticity
values.

Table A.6 summarizes the key formulas and relations for all of the functional forms described above.

Figure A.1: The CES exponent (ρ) as a function of the substitution elasticity
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Figure A.2: The CET exponent (ν) as a function of the transformation elasticity
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Table A.6: Summary of formulas for the CES/CRESH and CET/CRETH functions

CES CET

Xi = αi(Aλi)
σ−1V

(
P

Pi

)σ
Xi = γi(Aλi)

−ω−1V

(
Pi

P

)ω
P =

1

A

[∑
i

αi

(
Pi

λi

)1−σ
]1/(1−σ)

P =
1

A

[∑
i

γi

(
Pi

λi

)1+ω
]1/(1+ω)

σ =
1

1− ρ
≥ 0 ω =

1

ν − 1
≥ 0

ρ =
σ − 1

σ
ν =

ω + 1

ω
σ = 0⇒ ρ = −∞ Leontief ω = 0⇒ ν =∞ Leontief

0 < σ < 1⇒ ρ < 0

σ = 1⇒ ρ = 0 Cobb-Douglas 0 < ω <∞⇒ ν > 0

1 < σ <∞⇒ ρ > 0

σ =∞⇒ ρ = 1 Perfect substitution ω =∞⇒ ν = 1 Perfect transformation

CRESH CRETH

Xi = αi (Aλi)
σi−1 V

(
P

Pi

)σi
Xi = γi (Aλi)

−ω−1 V

(
Pi

P

)ωi

1 =
∑
i

αi

Kρi

(
Pi

AλiP

)1−σi
1 =

∑
i

γi

Kνi

(
Pi

AλiP

)1+ωi

σi =
1

1− ρi
≥ 0 ωi =

1

νi − 1
≥ 0

ρi =
σi − 1

σi
νi =

ωi + 1

ωi

Additive CES Additive CET

Xi = αiV

(
P

λiPi

)σ
Xi = γiV

(
λiPi

P

)ω
P =

[∑
i

αi (λiPi)
−σ
]−1/σ

P =

[∑
i

γi (λiPi)
ω

]1/ω

σ =
ρ

ρ− 1
≥ 0 ω =

ν

1− ν
≥ 0

ρ =
σ

σ − 1
ν =

ω

ω + 1

σ = 0⇒ ρ = 0 Leontief ω = 0⇒ ν = 0 Leontief

0 < σ < 1⇒ ρ < 0

σ = 1− ε⇒ ρ = −∞
σ = 1 + ε⇒ ρ =∞ Discontinuity 0 < ω <∞⇒ ν > 0

1 < σ <∞⇒ ρ > 0

σ =∞⇒ ρ = 1 ω =∞⇒ ν = 1

Additive CRESH Additive CRETH

Xi = αi
∑
j

Xj

ρj

(
P

λiPi

)σi
Xi = γi

∑
j

Xj

νj

(
λiPi

P

)ωi

1 =
∑
i

αi

ρi

(
λiPi

P

)−σi
1 =

∑
i

γi

νi

(
λiPi

P

)ωi

σi =
ρi

ρi − 1
≥ 0 ωi =

νi

1− νi
≥ 0

ρi =
σi

σi − 1
νi =

ωi

ωi + 1
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Appendix B

The CDE demand system

B.1 The CDE demand system

The Constant Difference of Elasticities (CDE) function is a generalization of the CES function, but it allows for more
flexibility in terms of substitution effects across goods and for non-homotheticity.1 The starting point is an implicitly
additive indirect utility function (see Hanoch (1975)) from which we can derive demand using Roy’s identity (and
the implicit function theorem).

B.1.1 General form

A dual approach is used to determine the properties of the CDE function. The indirect utility function is defined
implicitly via the following expression:

V (p, u, Y ) =

n∑
i=1

αiu
eibi

(
pi
y

)bi
≡ 1 (B.1)

where p is the vector of commodity prices, u is (per capita) utility and y is per capita income. Using Roy’s identity and
the implicit function theorem2 we can derive demand, x, where v is the indirect utility function (defined implicitly):

xi = − ∂v

∂pi
/
∂v

∂Y
= −

(
∂V

∂pi
/
∂V

∂u

)
/

(
∂V

∂Y
/
∂V

∂u

)
= −

(
∂V

∂pi
/
∂V

∂Y

)
(B.2)

This then leads to the following demand function:

xi =
αibiu

eibi
(
pi
y

)bi−1

∑
j

αjbjuejbj
(
pj
y

)bj (B.3)

Implementation is easier if we define the following variable:

ZC i = αibiu
eibi

(
pi
y

)bi
(B.4)

Then the budget shares can be expressed as:

si =
ZC i∑
j ZC j

(B.5)

and the demand expression is:

xi =
si
pi
y (B.6)

1 More detailed descriptions of the CDE can be found in Hertel et al. (1991), Surry (1993) and Hertel (1997).
2 See Varian (1992), p. 109.
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Implementation also requires evaluating u. This can be done by implementing equation (B.1) and inserting the
expression for ZC :

n∑
i=1

ZC i

bi
≡ 1 (B.7)

B.1.2 Elasticities

In order to calibrate the CDE system, it is necessary to derive the demand and income elasticities of the CDE. The
algebra is tedious, but straightforward.

The own-price elasticity is given by the following:

εi =
∂xi
∂pi

pi
xi

=

si

[∑
j

sjejbj − eibi

]
∑
j

sjej
+ bi (1− si)− 1 (B.8)

In deriving the elasticity, we make use of the following formula that defines the elasticity of utility with respect to
price (and again makes use of the implicit function theorem):

∂u

∂pi

pi
u

= −pi
u

(
∂V

∂pi

)
/

(
∂V

∂u

)
= − si∑

j

sjej
(B.9)

The price elasticity of utility is approximately the value share of the respective demand component as long as the
weighted sum of the expansion parameters, e, is close to unity. The value (or budget) share is defined in the next
equation:

si =
pixi
y

(B.10)

Letting σi = 1− bi (or bi = 1− σi), we can also write:

εi = si

σi − ei(1− σi)∑
j

sjej
−

∑
j

sjejσj∑
j

sjej

− σi (B.11)

With σ uniform, we also have:

εi = −siei(1− σ)∑
j

sjej
− σ (B.12)

With both e and σ uniform, the formula simplifies to:

εi = −si(1− σ)− σ = σ(si − 1)− si (B.13)

Equation (B.13) reflects the own-price elasticity for the standard CES utility function. Finally, with e uniform but
not σ, we have:

εi = si

[
2σi − 1−

∑
j

sjσj

]
− σi (B.14)

The derivation of the cross elasticities is almost identical and will not be carried out here. Combining both
the own-and cross price elasticities, the matrix of substitution elasticities takes the following form where we use the
Kronecker product, δ:3

εij = sj

−bj − eibi∑
k

skek
+

∑
k

skekbk∑
k

skek

+ δij(bi − 1) (B.15)

3 δ takes the value of 1 along the diagonal (i.e. when i = j) and the value 0 off-diagonal (i.e. when i 6= j).
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Again, we replace b by 1− σ, to get:

εij = sj

σj − ei(1− σi)∑
k

skek
−

∑
k

skekσk∑
k

skek

− δijσi (B.16)

For uniform σ, equation (B.16) takes the form:

εij = −eisj(1− σ)∑
k

skek
− δijσ (B.17)

And with a uniform σ and e, i.e. the CES assumption, we have:

εij = −sj(1− σ)− δijσ = σ(sj − δij)− sj (B.18)

Finally, for a uniform e only, the matrix of elasticities is:

εij = sj

[
σj − (1− σi)−

∑
k

skσk

]
− δijσi (B.19)

The income elasticities are derived in a similar fashion:

ηi =
∂xi
∂Y

Y

xi
=

1∑
k

skek

[
eibi −

∑
k

skekbk

]
− (bi − 1) +

∑
k

bksk (B.20)

For this, we need the elasticity of utility with respect to income:

∂u

∂Y

Y

u
= −Y

u

(
∂V

∂Y

)
/

(
∂V

∂u

)
=

1∑
k

skek
(B.21)

Note that for a uniform and unitary e, the income elasticity of utility is 1.
Replacing b with 1− σ, equation (B.20) can be re-written to be:

ηi =
1∑

k

skek

[
ei(1− σi) +

∑
k

skekσk

]
+ σi −

∑
k

skσk (B.22)

With a uniform σ, the income elasticity becomes:

ηi =
1∑

k

skek

[
ei(1− σ) + σ

∑
k

skek

]
=
ei(1− σ)∑
k

skek
+ σ (B.23)

With e uniform, the income elasticity is unitary, irrespective of the values of the σ parameters.
From the Slutsky equation, we can calculate the compensated demand elasticities:

ξij = εij + sjηi = −δijσi + sj

[
σj + σi −

∑
k

skσk

]
(B.24)

The cross-Allen partial elasticities are equal to the compensated demand elasticities divided by the share:

σaij = σj + σi −
∑
k

skσk − δijσi/sj (B.25)

It can be readily seen that the difference of the partial elasticities is constant, hence the name of constant difference
in elasticities.

σaij − σail = σj − σl (B.26)

With a uniform σ, we revert back to the standard CES where there is equivalence between the CES substitution
elasticity and the cross-Allen partial elasticity:

σaij = σ (B.27)

70



B.1.3 Calibration of the CDE

Calibration assumes that we know the budget shares, the own uncompensated demand elasticities and the income
elasticities. The weighted sum of the income elasticities must equal 1, so the first step in the calibration procedure
is to make sure Engel’s law holds. One alternative is to fix some (or none) of the income elasticities and re-scale the
others using least squares. The problem is to minimize the following objective function:∑

i∈Ω

(
ηi − η0

i

)2
subject to ∑

i∈Ω

siηi = 1−
∑
i/∈Ω

siηi

where the set Ω contains all sectors where the income elasticity is not fixed, i.e. its complement contains those sectors
with fixed income elasticities. The solution is:

ηi = η0
i + si

1−
∑
j /∈Ω

sjηj −
∑
j∈Ω

sjη
0
j∑

j∈Ω

s2
j

∀i ∈ Ω

Calibration of the σ parameters is straightforward given the own elasticities and the input value shares. The first
step is to calculate the Allen partial elasticities, these are simply the income elasticity adjusted by the own elasticities
divided by the budget shares:

σaii = ηi +
εii
si

(B.28)

Next, equation (B.25) is setup in matrix form:

σaii = Aσi (B.29)

where the matrix A has the form:

A =



2− 1

s1
− s1 −s2 . . . −sn

−s1 2− 1

s2
− s2 . . . −sn

...
...

. . .
...

−s1 −s2 . . . 2− 1

sn
− sn


(B.30)

or each element of A has the following formula:

aij = δij(2− 1/si)− sj
We can then solve for σ (and back-out the b parameters):

σi = A−1σaii (B.31)

There is nothing which guarantees the consistency of the calibrated σ parameters, which are meant to be positive.
The calculation of the σ parameters depends only on the budget shares and the own-price uncompensated elasticities.
If the calibrated σ parameters are not all positive, one could modify the elasticities until consistency is achieved. In
practice, problems have occurred when a sector’s budget share dominates total expenditure.

The e parameters are derived from Equation (B.22) and normalizing them so that their share weighted sum is
equal to 1. Equation (B.22) can then be converted to matrix form and inverted:

B =


s1σ1 + (1− σ1) s2σ2 . . . snσn

s1σ1 s2σ2 + (1− σ2) . . . snσn
...

...
. . .

...
s1σ1 s2σ2 . . . snσn + (1− σn)

 (B.32)

or

bij = sjσj + δij(1− σi)
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Then the e parameters are derived from matrix inversion:

ei = B−1Ci = B−1

(
ηi − σi +

∑
k

skσk

)
(B.33)

Calibration of the α parameters is based on equations (B.1) and (B.3). Start first with equation (B.3) and write
it in terms relative to consumption of good 1, i.e.:

xi
x1

=
αibiu

eibi
(pi
Y

)bi−1

α1b1u
e1b1

(p1

Y

)b1−1
(B.34)

This equation can be used to isolate αi:

αi =
xi
x1

α1b1u
e1b1

(p1

Y

)b1−1

biu
eibi
(pi
Y

)bi−1
(B.35)

and then inserted into equation (B.3):

n∑
i=1

αiu
eibi
(pi
Y

)bi
= α1u

e1b1 b1
s1

(p1

Y

)b1 [ n∑
i=1

si
bi

]
≡ 1 (B.36)

The final expression in equation (B.36) can be used to solve for α1 since the formula must equal 1 by definition:

α1 = u−e1b1
s1

b1

(
Y

p1

)b1[ n∑
i=1

si
bi

]−1

(B.37)

Substituting back into equation (B.36) we get:

αi =
xi
bi
u−eibi

(
Y

pi

)bi−1
[
n∑
j=1

sj
bj

]−1

(B.38)

The final calibration expression is then the following:

αi =
si
bi

(
Y

pi

)bi u−eibi
n∑
j=1

sj
bj

(B.39)

Utility is undefined in the base data and it is easiest to simply set it to 1.
In conclusion, for calibration we need the budget shares, initial prices, total expenditure, income elasticities and

the own-price uncompensated elasticities. From this, we can derive base year consumption volumes, the Allen partial
substitution elasticities through equation (B.28), σ (and therefore b) through equation (B.31) and the inversion of
the A-matrix, e through equation (B.33) and inversion of the B-matrix, and finally α through equation (B.39).

It is possible that the initial shares and elasticities lead to inconsistent calibrated values for the b or e parameters.
One solution, modified from Hertel (1997), is to implement some sort of maximum entropy method—explicitly
imposing the constraints on the parameters. Step 1 is to calibrate the b-parameters using the following minimization
problem:

minL =
∑
i

si(εii − ε0
ii)

2

subject to

εii = (1− bi) (si − 1)− si

[
bi + ηi −

∑
j

sjbj

]

0 < bi < 1

The loss function is a weighted some of square errors where ε0 represents the initial or target own-price elasticity
and ε will be the estimated elasticity with the constraints holding. The first constraint is a transformation of
equation (B.8) where the income elasticity is substituted into the definition of the own-price elasticity (swapping out
for the yet unknown e-coefficients). One critical issue is to ascertain what income elasticities to use in the formula
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above. One could use the target income elasticities, or an initial transformation of the target elasticities such as
described above.

The next step calibrates the e-parameters with some target income elasticities as given as well as the now
calibrated b-parameters. The minimization problem is formulated as the following:

minL =
∑
i

si(ηi − η0
i )

2

subject to

ηi =
1∑

k

skek

[
eibi −

∑
k

skekbk

]
− (bi − 1) +

∑
k

bksk

∑
i

siηi ≡ 1

(ηi − 1)
(
η0
i − 1

)
> 0

The final constraint insures that the estimated income elasticities preserve their relationship relative to 1, i.e.
target elasticities lower than 1 remain lower than 1 in the estimation procedure.

B.1.4 CDE in first differences

It is useful to decompose changes in demand using a linearized version of the demand function, and that which is used
in the standard GEMPACK version of the CDE function. The CDE implicit utility function can be used to derive a
relation between changes in income, utility and prices (all in per capita terms). The first step in the differentiation
of the utility function, equation (B.1), leads to the following expression:

0 =
∑
i

αieibiu
eibi−1

(pi
Y

)bi
du

−
∑
i

αibiu
eibi
(pi
Y

)bi−1 pi
Y 2

dY

+
∑
i

αibiu
eibi
(pi
Y

)bi−1 1

Y
dpi

This can be simplified by inserting the expression for the demand equation, equation (B.3), and replacing demand
with the budget shares (si):

0 =
du

u

∑
i

eisi −
dY

Y

∑
i

si +
∑
i

si
dpi
pi

And the final expression can be written as:

.

Y =
∑
i

eisi
.
u+

∑
i

si
.
pi (B.40)

where the dotted variables represent the percent change (and noting that the sum of the budget shares is equal to 1).
The differentiation of the demand function, equation (B.3) is somewhat more tedious. The first step leads to the

following expression:

dxi = αibieibiu
eibi−1

(pi
Y

)bi−1 du

D

+ αibiu
eibi (bi − 1)

(pi
Y

)bi−2 1

Y

dpi
D

− αibiu
eibi (bi − 1)

(pi
Y

)bi−2 pi
Y 2

dY

D

− αibiu
eibi
(pi
Y

)bi−1

D−2
∑
j

αjbjejbju
ejbj−1

(pj
Y

)bj
du

− αibiu
eibi
(pi
Y

)bi−1

D−2
∑
j

αjbjbju
ejbj

(pj
Y

)bj−1 1

Y
dpj

+ αibiu
eibi
(pi
Y

)bi−1

D−2
∑
j

αjbjbju
ejbj

(pj
Y

)bj−1 pj
Y 2

dY

where D is the denominator in the demand equation. This can be simplified to the following expression in terms of
the percent changes:
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.
xi = eibi

.
u+ (bi − 1)

.
pi − (bi − 1)

.

Y

−
∑
j

ejbjsj
.
u−

∑
j

bjsj
.
pj +

∑
j

bjsj
.

Y

Re-grouping terms, the expression becomes:

.
xi = (bi − 1)

.
pi −

∑
j

bjsj
.
pj

+
.
u

[
eibi −

∑
j

ejbjsj

]

+
.

Y

[∑
j

bjsj − (bi − 1)

]
The percent change in u can be replaced with the expression above, equation (B.40), to yield the following after
re-arrangement:

.
xi = (bi − 1)

.
pi −

∑
j

bjsj
.
pj −

1∑
k

eksk

∑
j

sj
.
pj

[
eibi −

∑
k

ekbksk

]

+
.

Y

∑
k

bksk − (bi − 1) +
1∑

k

eksk

(
eibi −

∑
k

ekbksk

)
The final formula inserts the formulas for the income and price elasticities from above to simplify further to the
following expression:

.
xi =

∑
j

εij
.
pj + ηi

.

Y (B.41)
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Appendix C

Dynamic model equations with
multi-step time periods

The step size in the model scenarios is allowed to vary across time—in order to save compute time and storage.
Particularly in the long-run scenarios, annual increments are not particularly useful. Some of the equations in the
model—essentially almost any equation that relies on a lagged variable needs to take into account the variable step
size, for example the capital stock accumulation equation.

KStock = (1− δ)KStock−1 + XFInv,−1

In fact, this equation is not even necessary in the model for a step size of 1 since both variables on the right-hand
side of the equation are lags. However, let n be the step-size, eventually 1. Then through recursion, the capital
accumulation function becomes:

KStockt = (1− δ)nKStockt−n +

n∑
j=1

(1− δ)j−1XFInv,t−j

If the model is run in step sizes greater than 1, the intermediate values of real investment are not calculated. They
can be replaced by assuming a linear growth model for investment:

XFInv,t =
(

1 + γI
)

XFInv,t−1

Replacing this in the accumulation function yields:

KStockt = (1− δ)nKStockt−n +

n∑
j=1

(1− δ)j−1
(

1 + γI
)n−j

XFInv,t−n

With some algebraic manipulation, this formula can be reduced to the following:

KStockt = (1− δ)nKStockt−n +

(
1 + γI

)n − (1− δ) n

γI + δ
XFInv,t−n

Where we have the following equation to determine the growth rate of investment:

XFInv,t =
(

1 + γI
)n

XFInv,t−n

which itself is now a function of contemporaneous investment. If n is equal to 1, it is clear that this equation simplifies
to the simple 1 step accumulation function. The capital accumulation function is no longer exogenous since it depends
on the investment growth rate, which itself is endogenous. To avoid scale problems, equations (3.155) and (3.156),
are used in place of the two more transparent equations above. Equation (3.155) is likely to evaluate to somewhere
between 10 and 20 since the first term is 1 plus the average annual growth of investment, to which is added the
depreciation rate less 1. If investment growth is 5 percent and depreciation is also 5 percent, then the value is 10.
The first term on the right-hand side of equation (3.156) is likely to be relatively small since it takes the previous
capital stock and subtracts a multiple of the previous period’s investment (lagged n years), and then multiplies by
the depreciation factor, so that the largest term is the second term, which is a multiple of the current volume of
investment.
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Appendix D

The accounting framework

This annex provides a visual representation of the accounting framework [to be completed].

Table D.1: The accounting framework for the Manage model

ACT COMM LAB

Activities χPa,jPa,jXa,j

Commodities χPA
i PAiXAi,a χPA

i PAiXAi,j

Labor Wa,lL
d
a,l

Capital PKa,vKd
a,v+RKFaKFa

Value added tax
(χPD
j PDj +PMARGj ζ

d
j )τ

va,d
j XDj

+(PMj +PMARGj ζ
m
j )τva,m

j XMj

Sales tax
∑
i (τAi,a+ςAi,a)χPA

i PAiXAi,a

Production tax (τpa+τsa)PXaXPa

Trade tax
τmj PWMjER(XMj +STBj

m)

+τej chi
PE
j PEjXEj

Direct tax

Enterprises

Households
∑
a
Wa,lL

d
a,l

Government

Investment

Stock change

Rest of the world PWMjER(XMj +STBj
m)
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Table D.1: The accounting framework for the Manage model (cont.)

CAP VAT ATX PTX MTX DTX

Activities

Commodities

Labor

Capital

Value added tax

Sales tax

Production tax

Trade tax

Direct tax
∑
a τ

k
aRKFaKFa

Enterprises χkentrKAPY

Households χkhKAPY

Government KAPY

(
1−
∑

entr
χkentr−

∑
h

χkh

)
YGotx YGatx YGptx YGmtx YGdtx

Investment

Stock change

Rest of the world

Table D.1: The accounting framework for the Manage model (cont.)

ENTR HH GOV

Activities

Commodities χPA
i PAi,hXAi,h χPA

i PAi,GovXAi,Gov

Labor

Capital

Value added tax

Sales tax
∑
i (τAi,h+ςAi,h)χ

PA
i PAiXAi,h

∑
i (τAi,Gov+ςAi,Gov)χ

PA
i PAiXAi,Gov

Production tax

Trade tax

Direct tax Taxentr
entr Taxh

h TaxGov

Enterprises Transfersentr,entr Transfersh,entr TransfersGov,entr

Households Transfersh,entr Transfersh,h TransfersGov,h

Government Transfersentr,Gov Transfersh,Gov TransfersGov,Gov

Investment Sentr
entr Sh

h Sg

Stock change

Rest of the world Transfersentr,RoW Transfersh,RoW TransfersGov,RoW
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Table D.1: The accounting framework for the Manage model (cont.)

INV STB RoW

Activities

Commodities χPA
i PAi,InvXAi,Inv χPS

i PSiSTBd
i +PMiSTBm

i ERχPWE
i PWEi,InvXEi,Inv

Labor

Capital

Value added tax

Sales tax
∑
i (τAi,Inv+ςAi,Inv)χ

PA
i PAiXAi,Inv

Production tax

Trade tax

Direct tax

Enterprises TransfersRoW ,entr

Households TransfersRoW ,h

Government TransfersRoW ,Gov

Investment ERS f

Stock change
∑
i χ

PS
i PSiSTBd

i +PMiSTBm
i

Rest of the world
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